
 ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 4, No. 2, 2009, pp. 153-160

The Computation of State Variable Model in Software Test
Process Using Alternating Group Explicit Iterative Algorithm

 Praveen R Srivastava 1, +, Navnit Jha 2 and G Raghurama 3

1 Computer science and Information Systems Group, Birla Institute of Technology & Science Pilani-333 031,
India

2 Mathematics Group, Birla Institute of Technology & Science Pilani-333 031, India
3 Electrical and Electronics Group, Birla Institute of Technology & Science Pilani-333 031, India

(Received November 23, 2008, accepted February 4, 2009)

Abstract. The aim of this paper is to construct a parallel algorithm for the model developed in software
testing process. The model treats software testing as a control problem. The software under test serves as a
controlled object that is modeled as second order equation. The ordinary simulation to such type of model
deteriorates in the vicinity of quality, efforts and complexity. The new approach based on parallel alternating
group explicit algorithm shows superiority over corresponding sequential algorithm. Computational results
are provided to illustrate the viability of the proposed technique.

Keywords: Software testing, State variable, Feedback control, Software process, AGE method, RMSE.

1. Introduction
In this piece of work, we consider the modeling and control of software testing process. Software testing

is classified into different category such as structural, functional or random. The internal description of
software to generate test cases categories as structural software testing. Many software testing methods are
available including software reliability engineering testing, transaction flow testing, equivalence class
partition based testing, control flow testing etc. A testing strategy determines what test case should be
selected and when software testing should be stopped. The software testing process can be characterized as a
feedback system through control theory in order to regulate the testing process. We present a test model
based on error reduction as the time increases. Earlier Cangussu et. al. [1, 2] has discussed similar model.
However, the model fails to explain the behavior of system when number of software defects are inversely
related with time as is frequent case. The model numerically leads to a tridiagonal system. The problem of
actually determining the solution of such tridiagonal system may be time consuming, particularly when, as
is frequently the case, the number of equations is large. Since we need to solve large system of equations, the
iterative algorithms are frequently used. The proper choice of the iterative algorithm to be used has a great
influence on the amount of computational effort required to solve a given problem. With slowly converging
iterative algorithm, the amount of time required may be so large, even with a very fast computer, as to make
the solution of problem impractical. Hence the resort to parallel algorithmic approach is imperative.

2. Development of Test Process Model
The software testing process involves development of second order model and is appropriate to capture

the essential nature of testing phase. The model is used to estimate the fault in software. During the testing
process errors are found and removed. Following parameters and variables are defined as

()tr : Number of software defect remains at time t

cs : Software complexity

fω : Work force

+ Corresponding author. E-mail address: praveenrsrivastava@gmail.com

Published by World Academic Press, World Academic Union

Praveen R Srivastava, et al: The Computation of State Variable Model in Software Test Process

154

γ : Constant characterizing overall quality of testing methods

ete : Effective test effort

re : Error reduction resistance

ne : The net effort applied

Using these variables and parameters, we have certain assumptions:
The magnitudes of the rate at which the remaining errors are decreasing is proportional to the net applied

effort and are inversely proportional to the time.

t
e

r n" = (2.1)

The magnitude of the rate at which the remaining errors are decreasing is inversely proportional software
complexity (see Cangussu [4]).

c

"
s

r 1
= (2.2)

The magnitude of the effective test effort is proportional to the product of applied work force and the
number of remaining errors ζ .

fet wre ζ= (2.3)

The error reduction resistance is proportional to the error reduction velocity and inversely proportional to
the quality of software testing . ξ

'rer γ
ξ

= (2.4)

Using equations (2.1) - (2.4) and carrying necessary algebra leads to the following model

r
ts

r
st

r
c

f'

c

" ζω
+

γ
ξ

= (2.5)

If denotes the disturbance during software testing. Then dF

0≥+
ζω

+
γ
ξ

= t,
s
F

r
ts

r
st

r
c

d

c

f'

c

" (2.6)

The equation (2.6) is written as

 () () () ()t,r,rtgrtertdr ''" ψ=++= (2.7)

where () () ()
c

d

c

f

c s
F

tg,
ts

te,
st

td =
ζω

=
γ
ξ

=

The solution to equation (2.7), usually deteriorates in case of low software quality (0→γ) and/or
software complexity (). Difficulties were experienced in the past for the solution of (2.7) in the vicinity of
singularity. We overcome these situations by modifying our method based on Taylor’s expansion (see Ref.
[6]).

cs

Let us define

 () ()h/rrr kk
'
k 211 −+ −= , () ()h/rrrr kkk

'
k 243 111 mm ±±= ±±

⎟
⎠
⎞⎜

⎝
⎛ψ= ±±±±

'
kkkk r,r,tG 1111 , ()1120 −+ −−= kk

'
k

'
k GGhrr , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ψ=

'
kkkk r,r,tG

Then the fourth order finite difference replacement of (2.7) is

[]kkkkkk GGGhrrr 10
12

2 11
2

11 ++=+− −++− , k = 1(1)N (2.8)

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 4 (2009) 2, pp 153-160

155

where denote the function satisfying the difference equation at the grids kr () 110 +== Nk,khtk . The
difference scheme (2.8) is of fourth order accurate for the numerical treatment of (2.7). We need the
following approximations in order to establish the singular free recurrence relation.

()3
2

1 2
hOdhdhdd "

k
'
kkk ±+±=± (2.9a)

()3
2

1 2
hOehehee "

k
'
kkk ±+±=± (2.9b)

()3
2

1 2
hOghghgg "

k
'
kkk ±+±=± (2.9c)

Substituting the approximations (2.9) into equation (2.8) and neglecting the higher order terms, we get a
linear difference equation of the form

kkkkkkk RHrcrbra =++ +− 11 2 , ()Nk 11= (2.10)

()

()⎥⎦
⎤

⎢⎣
⎡ −−+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+

−−
−−=

kk
'
kk

'
kk

"
k

k
'
kk

k

edeheh

)ddd(h

ddhdha

2
212

2212
24

1

2

2

2

,
()

()'
kk

"
k

kk
'
kk

edeh

eddhb

−+

−−−=

12

52
3

1

4

2
2

()

()⎥⎦
⎤

⎢⎣
⎡ −++

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+

−+
+−=

kk
'
kk

'
kk

"
k

k
'
kk

k

edeheh

)ddd(h

ddhdhc

2
212

2212
24

1

2

2

2

, ()[]'"2
2

12
12 kkkkk gdghghRH −+
−

= .

3. The Alternating Group Explicit Method
The main concern to this section is to present an efficient algorithm based on parallel approach to

compute the 3-term recurrence (2.10) developed for Test process model. The linear difference equations
(2.10) can be in general expressed as

kkkkkkk RHrcrbra =++ +− 11 2 , ()Nk 11= (3.1)
The difference equation (3.1) in matrix notation is

 RAr = (3.2)

where , ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

NN

NNN

ba
cba

cba
cb

2
2

2
2

111

222

11

OOOA []T
21 Nr,,r,r L=r

[]T1011 +−−= NNN rcRH..,,,raRHR
We split the matrix A as follows

 21 GGA += (3.3)
Where

JIC email for subscription: publishing@WAU.org.uk

Praveen R Srivastava, et al: The Computation of State Variable Model in Software Test Process

156

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

NN

NN
ba

b
c

ba
cb

11

44

33

22

11

1
O

G a
b

cb

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−

N

NN

NN

b
ba
cb

ba
cb

b

11

22

33

22

1

2 OG

Assuming and are non singular matrices, then parallel method based on alternating
group explicit algorithm is given by

IG ω+1 IG ω+2

 () () () ()k/k rr IGRIG ω−−=ω+ +
2

21
1 (3.4a)

() () () ()

.......,,,k
,rr /kk

210

21
1

1
2

=
ω−−=ω+ ++ IGRIG (3.4b)

where is an acceleration parameters and 0>ω ()1/ 2kr + is an intermediate vector(Evans [6])). Since
 and are non singular, the equations (3.4a) and (3.4b) in the explicit form IG ω+1 IG ω+2

() () () ()[]k/k rr IGRIG ω−−ω+= −+
2

1
1

21 (3.5a)

() () () ()[]21
1

1
2

1 /kk rr +−+ ω−−ω+= IGRIG (3.5b)
Simplifying equations (3.5a) and (3.5b), we obtain following algorithm

First sweep: For () 121 −= Nj
Let

()() 011 ≠−ω−ω+=Π ++ jjjj acbb
() () ()k

jj
k

jjj rbraRA ω−−β−= −1

 () () ()k
jj

k
jjj rcrbRB 21111 +++++ δ−ω−−=

 where
⎩
⎨
⎧ =

=β
otherwise1

1if0 j

⎩
⎨
⎧ −=

=δ
otherwise1

1if0 Nj

Then

 () ()() Π−ω+= +
+

jj
/k

j cBbAr 1
21

 () ()() Π−ω+= +
+

+ 1
21

1 jj
/k

j aAbBr

Second sweep: For 1=j

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 4 (2009) 2, pp 153-160

157

 () () () ()()
()ω+

−ω−−
=

++
+

1

21
21

21
1111

1 b
rcrbR

r
/k/k

k

For () 222 −= Nj
 Let

()() 011 ≠−ω−ω+=Π ++ jjjj acbb

 () () ()2121
1

/k
jj

/k
jjj rbraRA ++
− ω−−−=

 () () ()21
21

21
111

/k
jj

/k
jjj rcrbRB +

++
+

+++ −ω−−=

 Then

 () ()() Π−ω+= +
+

jj
k

j cBbAr 1
1

 () ()() Π−ω+= +
+

+ 1
1

1 jj
k

j aAbBr

 For Nj =

 () () () ()()
()ω+

−ω−−
=

+
−

+
+

N

/k
NN

/k
NNNk

N b
rarbR

r
21

1
21

1

4. Computational illustrations
To prove the efficiency of the implementation of the parallel alternating group explicit algorithm, all

parameters with different valid values are taken. All results of numerical experiments, which were gained
from implementation of the algorithms has been recorder in the tables. In all cases, initial guess is taken as
zero vector and the iterations were stopped when difference of two consecutive iterative values is less than

 was achieved. The acceleration parameter 1010− 90.=ω is chosen for parallel AGE algorithm. The
computational results shows superiority over corresponding sequential algorithm (Kai-Yuan Cai, et. al. [5]).

The exact solution is chosen. The right hand side function and boundary conditions may be
obtained using the exact solution as a test procedure. The root mean square errors (RMSE), minimum
number of time required to compute in terms of iterations

())exp(4ttr =

PI for parallel case and for sequential case are
presented in Table 1, 2 and 3.

SI

5. Conclusion
From Table 1, it is evident that as software quality increases the average number of iterations in parallel

case PI decreases more as compared to corresponding sequential iterations . Table 2 shows that as work
force increases the number of iterations in parallel and sequential case decreases and consequently execution
time diminish with increase in work force. Table 3 confirms the superiority of parallel iterations on
sequential one. Consequently high software complexity leads to very low execution time in parallel case as
compared to its counterpart.

SI

JIC email for subscription: publishing@WAU.org.uk

Praveen R Srivastava, et al: The Computation of State Variable Model in Software Test Process

158

Table 1 Table 2 Table 3

N SI PI RMSE

 50.=γ

 20 49 210 3.722e-05
 30 100 214 7.796e-06
 40 171 221 2.586e-06
 50 261 232 1.103e-06
 60 369 248 5.508e-07
 60.=γ

 20 60 158 2.772e-05
 30 125 163 5.891e-06
 40 214 173 1.976e-06
 50 326 192 8.502e-07
 60 461 236 4.277e-07
 70.=γ

 20 72 125 2.156e-05
 30 150 132 4.648e-06
 40 256 148 1.576e-06
 50 390 193 6.834e-07
 60 551 246 3.454e-07
 80.=γ

 20 83 103 1.737e-05
 30 174 113 3.796e-06
 40 297 148 1.299e-06
 50 452 205 5.667e-07
 60 638 301 2.879e-07

N SI PI RMSE

 2=fw

 20 62 158 2.475e-05
 30 129 164 5.517e-06
 40 220 174 1.915e-06
 50 335 195 8.444e-07
 60 474 242 4.325e-07
 3=fw

 20 61 158 2.607e-05
 30 127 164 5.656e-06
 40 217 174 1.927e-06
 50 331 193 8.391e-07
 60 467 239 4.258e-07
 4=fw

 20 60 158 2.772e-05
 30 125 163 5.891e-06
 40 214 173 1.976e-06
 50 326 192 8.502e-07
 60 461 236 4.277e-07
 5=fw

 20 59 157 2.956e-05
 30 123 163 6.193e-06
 40 211 172 2.052e-06
 50 321 191 8.742e-07
 60 454 233 4.363e-07

N SI PI RMSE

 2=cs
 20 60 158 2.772e-05
 30 125 163 5.891e-06
 40 214 173 1.976e-06
 50 326 192 8.502e-07
 60 461 236 4.277e-07
 4=cs
 20 132 68 9.512e-06
 30 278 128 2.367e-06
 40 475 224 8.668e-07
 50 722 342 3.940e-07
 60 1018 482 2.057e-07
 8=cs
 20 252 115 6.117e-06
 30 529 247 1.477e-06
 40 902 423 5.306e-07
 50 1366 643 2.381e-07
 60 1921 904 1.234e-07
 16=cs
 20 405 186 9.621e-06
 30 850 396 2.023e-06
 40 1447 677 6.591e-07
50 2189 1026 2.739e-07
 60 3074 1443 1.322e-07

42042 =ζ=ξ== ,,w,s fc 420602 =ζ=ξ=γ= ,,.,sc 420604 =ζ=ξ=γ= ,,.,w f

0

200

400

600

800

20 40 60

γ=.5, Is
γ=.5,Ip
γ=.8, Is
γ=.8, Ip

Fig. 1

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 4 (2009) 2, pp 153-160 159

0

200

400

600

20 40 60

wf=.5, Is
wf=.5,Ip
wf=.8, Is
wf=.8, Ip

Fig. 2

0

500

1000

1500

2000

2500

3000

3500

20 40 60

Sc=2, Is
Sc=2,Ip
Sc=16, Is
Sc=16, Ip

Fig. 3

1. References:
[1] Joao W. Cangussu, Raymond A. DeCarlo and A. P. Mathur. A State Variable Model for the Software Test Process.

Proc. of 13th International Conference on Software and System Engineering and their applications (ICSSEA).
Paris-France, December 2000.

[2] Joao W. Cangussu. A Formal Model for the Software Test Process. IEEE Transactions on Software Engineering.
2002, 28(8): 782-796.

[3] Kai-Yuan Cai. Optimal software testing and adaptive software testing in context of software cybernetics.
Information and Software Technology. 2002, 44: 841-855.

[4] Joao W. Cangussu. Modeling and Controlling the software test process. Proc. 23rd International Conference on
Software Engineering(ICSE’01), 2001.

[5] Kai-Yuan Cai, T Y Chen, Yong-Chao Li, Wei-Yi Ning and Y T Yu. Adaptive testing of software components.
ACM Symposium on Applied Computing, 2005.

[6] Evans D. J.. Group explicit method for solving large linear system. Int. J. Comput. Math. 1985, 17: 81-108.
[7] Kai-Yuan Cai, Yong-Chao Li, and Ke Liu. Optimal and adaptive testing for software reliability assessment.

Information and Software Technology. 2004, 46: 989-1000.

JIC email for subscription: publishing@WAU.org.uk

Praveen R Srivastava, et al: The Computation of State Variable Model in Software Test Process 160

JIC email for contribution: editor@jic.org.uk

	jicvol4no2paper091.pdf
	jicvol4no2paper092.pdf

