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Abstract. In this paper, three problems from the field of reliability engineering are considered. The first 
problem is a nonlinear constraint optimization problem. The problem is to determine the minimum cost of a 
life support system in a space capsule subject to the constraints on reliability of the system. The objective is 
to find the minimum cost of the system as well as maximum reliability.  The second problem is to determine 
the minimum cost of a complex bridge network system with constraints on system reliability. The objective 
is to minimize the cost and maximize reliability at the same time. The third problem is a discrete optimization 
problem. This problem is to determine the optimal number of redundancies in a multistage mixed system so 
that the reliability of the system can be maximized. Three cases of this problem are considered. All the 
problems are solved using Self Organizing Migrating Genetic Algorithm (C-SOMGA) which is a recently 
published algorithm for obtaining the global optimal solution of constrained optimization problems. C-
SOMGA is a hybridized genetic algorithm inspired by the features of Self Organizing Migrating Algorithm 
(SOMA) as well as Simple binary GA. The results obtained by C-SOMGA are compared with the existing 
published results in order to exhibit the roboutness of C-SOMGA for solving reliability engineering problems. 

Keywords: Genetic algorithms, Self Organizing Migrating Algorithm, Self Organizing Migrating Genetic 

algorithm, Reliability Optimization.   

1. Introduction  
System reliability plays a very important role in real world applications. Various kinds of complex and 

multistaged systems are studied in literature. The reliability of a system can be improved in two ways (1) by 
optimizing reliability of the system components and (2) by choosing optimal redundant components in 
various subsystems. In the first method the chances of improving the reliability are less inspite of using the 
currently available reliable components. In the second method chances are more but as we optimize the 
redundant components, the cost, weight and volume will increase as well. These are very common issues 
while solving reliability design problems. 

These kinds of reliability optimization problems have been attempted in literature. For example Misra [1] 
solved reliability optimization problem through sequential simplex search. Beraha and Misra [2] used 
random search algorithms to solve this kind of problems. Mohan and Shanker[3] solved a complex bridge 
network problem of reliability optimization using their Random Search Technique. Rao and Dhingra [4], use 
fuzzy multiobjective optimization approach to determine the reliability and redundancy appointment. Ravi et 
al [5] applied Nonequilibrium Simulated Annealing-Algorithm. Again Ravi et al [6] solved this problem in 
fuzzy environment. Chen [7] used a penalty guided artificial immune algorithm to solve mixed integer 
reliability design problem. A number of research papers are available for solving the reliability optimization 
problem using evolutionary algorithms for instance see Salazar et al [8], Salazar and Rocco [9] and 
Moghaddam et al. [10] etc. In some papers these problems are solved as a multicriterion problem, for 
instance Salazar et al [8], Salazar and Rocco [9]. Zhao et al [11], solved this problem as a multiobjective 
reliability optimization problem by using Ant Colony approach.  

The objective of this paper is to solve three common types of reliability optimization problems. The first 
problem is a nonlinear constraint optimization problem. The problem is to determine the minimum cost of a 
life support system in a space capsule subject to the constraints on reliability of the system. The objective is 

 
+ Corresponding author. Email address: kusumfma@iitr.ernet.in, diptipma@rediffmail.com 

Published by World Academic Press, World Academic Union 



Kusum Deep, et al: Reliability Optimization of Complex Systems through C-SOMGA 164 
 
to find the minimum cost of the system as well as maximum reliability.  The second problem is to determine 
the minimum cost of a complex bridge network system with constraints on system reliability. The objective 
is to minimize the cost and maximize reliability at the same time. The third problem is a discrete 
optimization problem. This problem is to determine the optimal number of redundancies in a multistage 
mixed system so that the reliability of the system can be maximized. Three cases of this problem are 
considered. The methodology to solve these problems is Self Organizing Migrating Genetic Algorithm (C-
SOMGA) which is a recently published algorithm for obtaining the global optimal solution of constrained 
optimization problems. C-SOMGA is a hybridized genetic algorithm inspired by the features of Self 
Organizing Migrating Algorithm (SOMA) as well as Simple binary GA. 

In section 2, the problem formulation for two types of complex systems and a multi-stage mixed system, 
is presented. In section 3, the C-SOMGA algorithm is discussed. In section 4, C-SOMGA is used to solve 
these three reliability optimization problems. Its results are discussed and compared with the previously 
quoted results. Finally in section 5, conclusions based on this study are drawn. 

2. Problem Description  
A complex system can consist of any logical configurations of stages, including combinations in series, 

parallel and bridge arrangements. In this paper three reliability optimization problems are considered. The 
description of these three problems is given below: 

Problem 1: Life support system in a space capsule 

This problem is a continuous nonlinear optimization problem. The source of this problem is Ravi et al 
[6].  The problem is to determine the minimum cost of a life support system in a space capsule subject to the 
constraints on reliability of the system. The objective is to find the minimum cost of the system as well as 
maximum reliability.  

The schematic diagram is shown in Fig 1. The system has 4 components, each having component 
reliability R , i =1, 2, 3,…4. The problem formulation is as follows: i

    24123

2

413 11.1 RRRRRRRRS                                        (1) 

Minimize  subject to: SC

;4,3,2,1,1min,  iRR ii (2)                                      

.1min,  SS RR        (3) 

Where  

SC  is the system cost 

iR is the reliability of the ith component 

SR is the reliability of the system 

min,iR (=0.5) is the lower bound on the reliability of ith component and  

min,SR  is the lower bound on system respectively 

The system cost is: SC

,222 4321
44332211
 RKRKRKRKCS              (4) 

.,6.0,9.0,150,200,100,100 min,4321 iallforRKKKK iS    

Problem 2: Complex Bridge-Network 

Here the bridge network system is considered. The source of this problem is Mohan and Shanker (now 
Deep) [3].  This problem is to determine the minimum cost of a complex bridge network system with 
constraints on system reliability. The objective is to minimize the cost and maximize reliability at the same 
time. This problem is earlier solved by Ravi et. al [5] and  Ravi et. al [6]. The schematic diagram is shown in 
Fig 2. The system has 5 components, each having component reliability Ri, i =1, 2, 3,…5. The reliability  

of the system, which is probability of success of the system, is given by     
SR
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Thus in general  is a nonlinear function f (RSR , R R , R , R ) of the variables R , i=1, 2,…51  2, 3  4  5 i . 
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Following Misra [1], the cost C of the jth component is taken as 
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Thus the total cost of the system, which is to be minimized is 

SC =                                      (7) 


5

1j
jC

The overall reliability  of the system is given by (7) and the overall cost  of the system is given by 

(9) have to be respectively maximized and minimized, keeping in view the following restrictions on the 
reliability component.  

SR SC

 0  R  1, j=1, 2, 3,…, 5.                                                    (8) j   

Theoretically speaking the maximum reliability of the system is 1, which is obtained for each Rj = 1. 
However, from (8) it is clear that the value of C    as Rj j  1. It means that ordinarily in achieving 
reliability close to unity the cost of the system will increase considerably. Although it is a multiobjective 
optimization problem, it is used here as a single objective problem as follows: 
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     Fig. 1: A Complex system.                              Fig. 2: Complex Bridge Network system.   

Problem 3: n-Stage Mixed System 

The source of this n-stage mixed system problem is Ravi et al [6]. This problem is to determine the 
optimal number of redundancies in a multistage mixed system so that the reliability of the system can be 
maximized. It is an integer nonlinear programming problem. The schematic diagram is shown in Fig 3. Three 
cases of this problem are considered here.  

Case (i): when n=4. 
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The values of constants  and , are given in Table 1. .4,3,2,1jjC jW

Case (ii): when n=5. 
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The values of constants ,  and , jP jC jW .5,4,3,2,1j are given in Table 2. 

Stages j N1 2

 
Fig. 3: Mixed series parallel system. 

Table 1: Constants for problem 3 Case (i) 

j 1 2 3 4
Rj 0.80 0.70 0.75 0.85
Cj 1.2 2.3 3.4 4.5
Wj 5 4 8 7
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Table 2: Constants for problem 3 Case (ii) 

j 1 2 3 4 5
Rj 0.80 0.85 0.90 0.65 0.75
Pj 1 2 3 4 2
Cj 7 7 5 9 4
Wj 7 8 8 6 9

Case (iii): when n=15. 

Two models are considered for this case. Model 1 is taken from Ravi et al [5] and model 2 is taken from 
Ravi et al [6]. These are described below: 

Model 1:   

,15,,2,1, jx jFind the optimal which maximize: 
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The values of constant  and , are given in Table 3. .15,2,1 jjC jW

Model 2:   

,15,,2,1, jx j which maximize: Find the optimal 
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The values of constants  and , .are given in Table 3. jC jW 15,2,1 j

Table 3: Constants for problem 3 Case (iii) 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0.90 0.75 0.65 0.80 0.85 0.93 0.78 0.66 0.78 0.91 0.79 0.77 0.67 0.79 0.67J 

C 5 4 9 7 7 5 6 9 4 5 6 7 9 8 6J 

W 8 9 6 7 8 8 9 6 7 8 9 7 6 5 7J 

3. C-SOMGA for optimization 
Deep and Dipti [12] present a hybridized genetic algorithm, named SOMGA, for nonlinear 

unconstrained optimization problems of the type: 

  Min f(X)     where X= (x , x , ….. x )           (20) 1 2 n

SOMGA is a hybridization of Self Organizing Migration Algorithm (SOMA) of Zelinka and Lampinen [13] 
and the simple Binary Genetic Algorithm (GA).  SOMA is a not-so-well-known algorithm which surfaced in 
2000. The main features that motivate us to incorporate SOMA into GA are that SOMA works with very low 
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population size and has more exploration capabilities than other low population based approaches. 
Hybridizing SOMA with simple GA is expected to increase the reliability, efficiency and robustness of the 
search algorithm.  

In order to handle constraints of the type: 

     subject to   g (X) > j 0 for j=1, 2,  …….. m                           (21) 
the following constraint handling mechanism is incorporated into SOMGA:  

The well known tournament selection operator is employed between two chromosomes in the following 
way, for the entire population in a particular generation: 

 If both chromosomes are not in the feasible region, then the one which is closer to the feasible region 
is carried over to the next generation. The values of the objective function are not calculated for either 
chromosomes. 

 If one chromosome is in the feasible region and the other one is out of the feasible region, then  the 
one which is in the feasible region is carried over to the next generation. The values of the objective 
function are not calculated for either chromosome. 

 If both chromosomes are in the feasible region, then the values of the objective function are 
calculated for both chromosomes and the one which has a better value of the objective function 
(higher fitness value) is carried over to the next generation. 

The new method such formed for solving constrained nonlinear optimization problems is named as C-
SOMGA.  Its comparison with GA, using the above mentioned constraint handling mechanism is performed 
and well established in Deep and Dipti [14]. 

The C-SOMGA is described as follows: First the chromosomes/individuals are generated randomly. 
These individuals compete with each other through the above constraint handling mechanism New 
individuals are created using single point crossover and bitwise mutation. The best individual among them is 
considered as leader and all others are considered as active members. For each active individual a new 
population of size N is created, where N=path length/step size. This population is nothing but the new 
positions of the active individual, proceeds in the direction of the leader in n steps of the defined length. The 
movement of an individual is given as follows: 

 

.

,,,0

,,,,,,

loopmigrationactualisML

PathLengthtoStepbytwhere

tPRTVectorxxxx j
ML

startji
ML

jL
ML

startji
MLnew

ji





                     (22) 

Then sort this population according to the fitness value in decreasing order. Starting from the best one of 
the new population evaluates the constraint violation function described below: 

        
 


M

m

K

k
kkm xgGxhx

1 1

22
                                           (23) 

If  x =0, replace the active individual with the current position and move to the next active individual. 

And If x > 0 then move to the next best position of the sorted new population. In this way, all the active 
individuals are replaced by the new updated feasible position. If no feasible solution is available then active 
individual remains the same. At last, the best individuals (number equal to population size) from the previous 
and current generations are selected for the next generation. The computational steps of this approach are 
given below: 

Step 1: Generate the initial population.  

Step 2: Evaluate all individuals. 

Step 3: Apply tournament selection for constrained optimization on all individuals to select the better 
individuals for the next generation. 

Step 4: Apply crossover operator on all individuals with crossover probability Pc to produce new 
individuals. 

Step 5: Evaluate the new individuals. 

Step 6: Apply mutation operator on every bit of every individual of the population with mutation 
 probability P .  m
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Step 7: Evaluate the mutated individuals.  

Step 8: Find leader (best fitted individual) of the population and consider all others as active individuals 
of the population. 

Step 9: For each active individual a new population of size N is created. This population is nothing but 
the new positions of the active individual towards the leader in n steps of the defined length. The movement 
of this individual is given in equation (1). 

Step 9.1: Sort new population with respect to fitness in decreasing order. 

Step 9.2: For each individual in the sorted population, check feasibility criterion. 

Step 9.3: If feasibility criterion is satisfied replace the active individual with the new position, else 
move to next position in sort order and go to step 9.2. 

Step 10: Select the best individuals (in fitness) of previous and current generation for the next generation 
via tournament selection. 

Step 11:  If termination criterion is satisfied go to step 12 else go to step 3. 

Step 12:  Report the best chromosome as the final optimal solution. 

4. Results and Discussion 
The three problems described in section 2 are solved using C-SOMGA described in section 3. The 

experimental setup used to solve these problems is presented in Table 4. In all the problems, the population 
size is kept fixed to 20, other parameters are also same. 10 runs are performed for each problem and best one 
is reported. The stopping criterion used, is fixed number of function evaluations (100000).   

Table 4: Experimental setup 

Population size 20

Pc 0.65

Pm 0.002

Step size 0.31

Path length 3

String length 30

The results obtained for this problem using C-SOMGA are reported in the Table 5. These results are 
compared with the results given by Ravi et. al [5] using NESA and by Ravi et al [6] using fuzzy concepts. It 
can be seen in the Table 5 that the cost of the system obtained by C-SOMGA that is 641.824, is less than the 
cost obtained by NESA (Ravi et. al [5]) that is 641.824 and is similar to the cost obtained by fuzzy (Ravi et 
al [6]). In other words we can say that C-SOMGA is not expensive. On the other side the reliability of the 
system given by C-SOMGA i.e. 0.900001 is slightly superior to Ravi et. al [6] that is 0.9. Hence on the basis 
of these results we can say that C-SOMGA is giving superior results than that of other existing techniques.  

Table 5: Optimal Solution of Problem 1 

 SOMGA Ravi et.al.(1997) Ravi et.al.(2000) 
Using NESA Ising FUZZY 

R 0.50002256 0.50006 0.50000 1 

R 0.83889956 0.83887 0.83892 2 

R 0.55600000 0.50001 0.50000 3 

R 0.50000000 0.50002 0.50000 4 

R 0.90000100 0.90001 0.90000 S 

C 641.82400000 641.83320 641.82400 S 

The results of the Problem 2 obtained by C-SOMGA along with previously quoted results are presented 
in Table 6. It can be seen in Table 6 that the cost of the system obtained by C-SOMGA i.e. 5.01992 is lower 
than the cost obtained by Ravi et. al [5] i.e. 5.01993 and the cost obtained by Ravi et. al [6] i.e. 5.02042. But 

JIC email for subscription: publishing@WAU.org.uk 



Kusum Deep, et al: Reliability Optimization of Complex Systems through C-SOMGA 170 
 
the reliability obtained by C-SOMGA i.e. 0.99 is lesser than the reliability obtained by Ravi et. al [6] i.e. 
0.9905. Hence for this system C-SOMGA is less reliable than Fuzzy (Ravi et. al [6]).   

Table 6: Optimal Solution of Problem 2 

 SOMGA Ravi et.al.(1997) Ravi et.al.(2000)
Using NESA Using FUZZY 

R 0.935359 0.93747 0.936351 

R 0.934304 0.93291 0.938692 

R 0.790332 0.78485 0.806153 

R 0.935504 0.93641 0.935124 

R 0.934575 0.93342 0.934765 

R 0.99 0.99000 0.9905S 

C 5.01992 5.01993 5.02042S 

To solve Problem 3 one modification is made in C-SOMGA, since this is a integer optimization problem 
After each step, the real variables are first converted to integers. Three cases of this problem are considered. 
Case (i), when the number of stages in multistage mixed system is 4. In case (ii), it is 5 and in the case (iii), it 
is increased to 15. As the stages are increased the complexity of the system will increase as well.  

Table 7: Optimal solution of Problem 3 Case (i) 

 Raviet.al.(1997)
SOMGA 

Using NESA 
x 5 51 

x 6 62 

x 5 53 

x 4 44 

R 0.99750 0.99750S 

g 54.80000 54.800001 

g 117.00000 117.000002 

Q 0.00032 0.000321 

Q 0.00073 0.000732 

Q 0.00098 0.000983 

Q 0.00051 0.000514 

Table 8: The optimal solution for problem 3 Case (ii) 

 SOMGA Ravi 
et.al.(1997) 

Mohan & 
Shanker(1987) 

Using NESA 
x 3 3 3 1 

x 2 2 2 2 

x 2 2 2 3 

x 3 3 3 4 

x 3 3 3 5 

R 0.90450 0.90450 0.90450 S 

g 83 83 83 1 

g 146.12500 146.12500 146.21000 2 

g 192.48000 192.48000 192.47000 3 

Q 0.00800 0.00800 0.00800 1 

Q 0.02250 0.02250 0.02250 2 

Q 0.01000 0.01000 0.01000 3 

Q 0.04287 0.04287 0.04287 4 

Q 0.01562 0.01562 0.01562 5 
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x x x x   

The results for case (i) and case (ii) obtained by C-SOMGA are presented in Table 7 and 8 respectively 
and compared with previously quoted results. Refer [5] and [3]. In both the cases the results obtained by C-
SOMGA are similar to the previously quoted results. Thus the performance of C-SOMGA is similar to the 
performance of existing techniques for this system (case (i) and case (ii)).  

In case (iii), two models are available in literature. One model is taken Ravi et. al [5] and the second 
model is taken from Ravi et. al [6]. The results obtained for both models of case (iii) using C-SOMGA along 
with previously quoted results are given in Table 9. In model 1 results obtained by C-SOMGA are same as 
results given by Ravi et. al [5]. In model 2, C-SOMGA achieves the maximum reliability of the system that 
is 0.9563. Also the solution quoted by Ravi et. al [6] is infeasible whereas C-SOMGA produced feasible 
solution with better reliability. Hence in this case C-SOMGA is better than Fuzzy.   

Table 9: The optimal solution for problem 3 Case (iii) 

x x x x x x x x x x x x Ri 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S 

C
(

3 4   
-SOMGA 

 5 3 3 2 4 5 4 3 3 4 5 5 5 0.9450
Model 1) 

C
(

3 4   
-SOMGA 

 5 4 3 2 4 5 4 3 4 4 5 4 5 0.9563
Model 2) 

R
N

3 4   
avi et.al. (1997) 

 5 3 3 2 4 5 4 3 3 4 5 5 5 0.9450
ESA 

R
F

3 4   
avi et.al.(2000) 

 5 4 3 3 4 5 4 3 3 4 5 5 5 0.9552
UZZY 

On the basis of these results it is clear that C-SOMGA is able to solve reliability optimization problems 
and produce results better or comparable to the previously quoted results with less population size. 

5. Conclusions 
In this paper C-SOMGA has been used to optimize the reliability as well as cost of the three complex 

systems.  These problems have been taken from the field of reliability engineering. In two problems, C-
SOMGA obtains better solutions than the previously quoted results and in one problem results are 
comparable. The population size required to solve each problem is only 20. On the basis of results presented 
in this paper it is concluded that C-SOMGA has a physical utility in solving reliability optimization problem. 
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