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Abstract. The harmonic projection method can be used to find interior eigenpairs of large matrices. Given 
a target point or shift t  to which the needed interior eigenvalues are close, the desired interior eigenpairs are 
the eigenvalues nearest t  and the associated eigenvectors. In this paper, we present a new algorithm, which 
is called weighted harmonic projection algorithm for computing the eigenvalues of a nonsymmetric matrix. 
The implementation of the algorithm has been tested by numerical examples, the results show that the 
algorithm converges fast and works with high accuracy 
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1. Introduction 
Finding eigenvalues is an important task in scientific computation. There are many applications in 

physics, chemistry, and engineering. These include computing energy levels of atoms, finding vibrational 
states of molecules, and determining how buildings will vibrate during earthquakes. 

Also one of the most important and practical topics in computational mathematics is computing some of 
the interior eigenvalues close to target point or shift t  and the associated eigenvectors. The harmonic 
projection method has been accepted to be one of commonly used method for computing interior eigenpairs. 

However, it has been shown that the harmonic projection method may converge erratically and even may 
fail to do so. 

In this paper, we present a new algorithm for the harmonic projection algorithm, which is called 
weighted harmonic projection algorithm for computing some of the interior eigenvalues close to t  of the 
eigenvalue problem, , where A is an n matrix ,and ( ,  is referred to as an eigenpair of 

A with 
i iAX Xl= n´ )i iXl

1iX = , here the norm used is the Euclidean norm. The implementation of the algorithm has been 
tested by numerical examples, the results show that the algorithm converges fast and works with high 
accuracy. 

The paper is organized as follows. Section 2 describes Arnoldi method and some properties of it. Section 
3 describes weighted Arnoldi method and some properties of it. Section 4 describes harmonic projection 
method for computing some of the interior eigenvalues close to target point or shift t  and the associated 
eigenvectors. Section 5 describes a new algorithm which is call weighted harmonic projection method. 
Section 6 reports numerical results on three real world problems. Concluding remarks are given in section 7.  

2. Arnoldi Method 
This method was developed by Arnoldi [1, 8, 9], in 1951. It work on the Krylov subspace: 

1( , ) { , , , }m
mk A v span v Av A v-=   
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m

where A  is a  n  matrix and  is an arbitrary vector. The method starts with an initial vector and 
after m-step generates a n  matrix   such that . 

n´ nv RÎ
mVm´ H

m mV AV H@
Therefore each eigenvalue of  is an approximation of the corresponding one in . mH A

The Arnoldi algorithm is based on the Gram-Schmidt orthogonalization procedure, since modified 
Gram-Schmidt algorithm (MGS) has a good numerical stability. We use MGS in our method. This algorithm 
is known as the Arnoldi modified Gram-Schmidt algorithm. 

The algorithm is: 

2.1. Algorithm: (Arnoldi MGS process) 
Choose a vector  of norm 1 1v

For 1, ,j m=   do 
: jw Av=  

For do 1, ,i j= 

,

: ( , )

:

ij i

i j i

h w v
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=
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End do. 
 

 
Theorem 2.2 The vectors produced by the Arnoldi algorithm form an orthonormal basis of the 

subspace . 
1 2, , , mv v v

1
1 1, ,

mAv A - 1{ , }mk span v v=
     Proof in [8]. 
 
 
Theorem 2.3 Denote by  a matrix with column vectors  and by  a  
Hessenberg matrix whose nonzero entries are defined by the algorithm. Then the following relations hold: 

mV n m´ 1 2, , , mv v v mH m m´

1, 1 ,

.

H
m m m m m m m

H
m m m

AV V H h v e

V AV H

+ += +

@
 

    Proof in [8]. 
 

Theorem 2.4 Let  be an eigenvector of  associated with the eigenvalue  and  the Ritze 

approximate eigenvector . Then    

( )m
iy mH

( )m
il ( )m

iu
( ) ( )m
i m iu V y= m

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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i i m m m i

A I u h e y v
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l
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
 

    Proof in [9]. 
 

3. Weighted Arnoldi Method 

This algorithm has been developed by [2]. Let be a diagonal matrix 

with . If are two vectors of .We define the D-scalar product as 
1 2( , ,..., )nD diag d d d=

0, 1,2,...,id i = n

i i

,u v n

1

( , )
n

T
D i

i

u v v Du d u v
=

= = å  

The D-norm . D  associated with this inner product is 
|| || ( , ) , n

D Du u u u= " Î   
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Now the weighed Arnoldi process, which constructed a D-orthonormal basis 

of the Krylov subspace 
1( , ) { , , , }m

mk A v span v Av A v-=   
can be defined as follows [2]. 
 
3.1. Algorithm: (Weighted Arnoldi process) 
Choose a vector  such that 1v 1 1Dv =  

For 1, ,j m=   do 
: jw Av=  

For do 1, ,i j= 

,

: ( , )

:

ij i D

i j i

h w v

w w h v

=

= -
 

End do 
1,

1
1,

:

:

Dj j

j
j j

h w

w
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h

+

+
+

=

=  

End do. 
 
Let { }1 2, , ,mV v v v=  m

m

m

,then we have: 

IT
m mV DV =  

 
Theorem 3.2 Denote by  a matrix with column vectors  and by  a  
Hessenberg matrix whose nonzero entries are defined by the algorithm. Then the following relations hold: 

mV n m´ 1 2, , , mv v v mH m m´

1, 1 ,

.

H
m m m m m m m

H
m m m

AV V H h v e

V DAV H

+ += +

@
 

    Proof: similar to above theorem (2.3) 
 

Theorem 3.3 Let  be an eigenvector of  associated with the eigenvalue  and  the Ritze 

approximate eigenvector . Then    

( )m
iy mH

( )m
il ( )m

iu
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i m iu V y=
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Proof: Similar to above theorem (2.4). 

4. Harmonic Projection Method 
If  is not an eigenvalue of A then we have from  that  t i iAX Xl= i

1 1
( ) i i

i
A I X Xt

l t
-- =

-
 

Therefore, the interior eigenvalues near t  are transformed into exterior ones with largest magnitudes of 
. 1( )A It --

For the given t  and a subspace  the harmonic projection method seeks the pairs ( ) satisfying 
the harmonic projection (for more details see [5, 7]), 

( , )mk A v ,i Xl 
i

)
1( , )i mX k A vÎ                                                                       (1) 

1( ) ( ,i i i mAX X A I k A vl t- ^ -                                                         (2) 

and uses them to approximate some eigenvalues of A  near t  and the associated eigenvectors. 
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From (2) we have 

(( ) ) ( ) 0H
m i i iA I V AX Xt l- -    

Where is an orthonormal basis of  then  mv 1( , )mk A v

(( ) ) (( ) ( ) ) 0H
m i iA I V A I X Xt t l t- - - -                                            (3) 

Since  and  is an orthonormal basis of  then we can write 1( , )i mX k A vÎ
mv 1( , )mk A v

i mX V g=                                                                       (4) 
Substituting (4) in (3) gives 

(( ) ) (( ) ( ) ) 0H
m m i i mA I V A I V g V gt t l t- - - -                                       (5) 

or 

(( ) ) ( ) ( ) ( )H H
m m i i mA I V A I V g V A I Vt t l t t- - = - -                               (6) 

And by theorem (2.4) 

1, 1( ) ( ) H
m m m m m mA I V V H I h v et t + +- = - +                                           (7) 

or 

1 1,( ) ( )H H H H H H
m m m m mV A I H I V e v ht t + +- = - +                                      (8) 

Substituting (8) in (5) gives 

1 1, 1, 1

1 1,

(( ) )( ( ) )

( )(( ) )

H H H H H
m m m m m m m m m m m m i

H H H H
i m m m m m m m i

H I V e v h V H I h v e g

H I V e v h V g

t t

l t t

+ + + +

+ +

- + - +

- - +  

or  

1, 1,(( ) ( ) )

( )( )

H H
m m m m m m m m

H
i m i

H I H I e h h e g

H I g

t t

l t t

+ +- - +

- -                                       (9) 

If  is nonsingular then  mH t-

1, 1,(( ) ( ) ) ( )H H H
m m m m m m m m i i iH I H I e h h e gt t l-

+ +- + - = -                          (10) 

Therefore it is sufficient to compute the eigenvalues of (10). Following the above discussion, we present 
a harmonic projection iteration method. 

4.1 Algorithm. (Harmonic projection algorithm) 
1. Input, , witht 1v 1 1v = , l: the numbers of desired eigenvalues. 

For  do 0,1,S = 
2. Run algorithm2.1 (For computing  and .) 1 1 2[ , , ..., ]m mV v v v+ += 1

I

gt
H g

)

X

mH

3. If  is nonsingular then  mH t-

Solving  1, 1,(( ) ( ) ) ( )H H H
m m m m m m m m i i iH I H I e h h e gt t l-

+ +- + - = -

Else solving  1, 1,(( ) ( ) ) ( )( )H H H
m m m m m m m m i i m iH I H I e h h e g H It t l t t+ +- - + = - -

end if; (For computing( , , .) )i igl i=1,...,m

4. Select s with respect to the smallest value of s is to approximate the desired 

eigenvalues . 

,
il ,( il t-
i=1,...,l

5. Take the harmonic Ritz pairs   ( , , i= as approximations.  )i i m iX V gl =  1,...,l

6. Set  and normalized.end for. ( )( 1)

1

l
ss
i

i

v +

=
= å

( )mTheorem 4.2: Let be the harmonic Ritz vector, be the harmonic Ritz value then: ( )m
m iiX V g=

il
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5. Weighted Harmonic Projection Method 
In this section we construct a new algorithm for modified the above algorithm and it is called weighted 

harmonic projection algorithm. 

In this algorithm we will use as D-norm substituted 2-norm. 

  
5.1 Algorithm. (weighted Harmonic projection algorithm) 
1. Input, , witht 1v 1 1Dv = , l: the numbers of desired eigenvalues. 

For  do 0,1,S = 
2. Run algorithm3.1 (For computing  and .) 1 1 2[ , , ..., ]m mV v v v+ += 1

I

gt
H g

)

X

mH

3. If  is nonsingular then  mH t-

Solving  1, 1,(( ) ( ) ) ( )H H H
m m m m m m m m i i iH I H I e h h e gt t l-

+ +- + - = -

Else solving  1, 1,(( ) ( ) ) ( )( )H H H
m m m m m m m m i i m iH I H I e h h e g H It t l t t+ +- - + = - -

End if; (For computing( , , i .) )i igl =1,...,m

4. Select s with respect to the smallest value of s is to approximate the desired 

eigenvalues . 

,
il
i=

,( il t-
1,...,l

5. Take the harmonic Ritz pairs   ( , , i= as approximations.  )i i m iX V gl =  1,...,l

6. Set  and D-normalized.endfor ( )( 1)
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l
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Theorem 5.2: Let be the harmonic Ritz vector, be the harmonic Ritz value then: ( ) ( )m m
i m iX V g=

il

2( ) ( ) ( ) ( ) 2 ( )
1, 1( ) ( )m m m m H m

i i m m i i m m m m iD D
A I X V H I g h v e gl l + +- = - + 

D

m

m
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Proof: 
 

Since we have  then 1, 1
H

m m m m m mAV V H h v e+ += +

 
( ) ( ) ( ) ( )

1, 1
m m m H
i m i m m i m m m mAX AV g V H g h v e g+ += = +  

So 
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6. Numerical Results 
In this section we report some numerical experiments on tree problems. The algorithm has been tested 

using MATLAB 7.0.4on a Pentium IV CPU 3.06GHz with main memory 1 gigabyte. And machine 
precision . T1,T2 denotes times in seconds for algorithms 4.1 and 5.1 and m denote step 
of Arnoli process and Iter1 and Iter2 are numbers restarted for algorithms 4.1 and 5.1 and R1 and R2 are 
accuracy for algorithms 4.1 and 5.1  and  is arbitrary value. 

162.22 10eps -» ´

t
 
 
6.1 Example: Matrix A is a banded matrix select from [3], which use in Quantum Chemistry, i.e. 

1 0.21 1.2 0 0.13 1.42

0.11 2 0.21 1.2 0 0.13 1.42

0.12 0.11 3 0.21 1.2 0

0 0.12 0.11 4

0.34 0 0.12 0.13 1.42

0.45 0.34 0 0.21 1.2 0 0.13

0.45 0.11 197 0.21 1.2 0

0.12 0.11 198 0.21 1.2

0.34 0 0.12 0.11 199 0.21

0.45 0.34 0 0.12 0.1

A =

 
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é ù
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ê ú
ê ú
ê ú
ê ú
ê úë û

 

 
The result has shown that in Table1. 
 
 6.2 Example: This example attempts to illustrate the efficiency of the adaptive shifts strategy. The matrix is 
due to Morgan [4]. It is a tridiagonal matrix with 1, 2, 2.05, 2, 1, 3, 4, 5,…, 998 on the main diagonal, -0.1 in 
each superdiagonal position and 0.1 in each subdiagonal position. 
The result has shown that in Table2. 
 
6.3 Example: Consider the constant coefficient convention-diffusion equation  

1 2 3( , ) ( , ) ( , ) ( , ) ( , )x yu x y p u x y p u x y p u x y u x yl-D + + - =  

On a square region   with the boundary condition  where and are 
positive constant. Discretization by five differences on uniform n  grid points using the row wise natural 
ordering gives a block tridiagonal matrix of the form  

[0,1] [0,1]´ ( , ) 0u x y = 1 2,p p 3p
n´
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Where  and2
1 2(1/2) , (1/2) ,p h p h p hb g q= = = 3

1
(h n= + 1) . The order of A is . By taking 

 and , we can obtain a 36  matrix A (36). 

2N n=

1 2 31, 0p p p= = = 6n = 36´
The result has shown that in Table3. 

Table1 for example 6.1 

 Iter1 Iter2 R1 R2 T1 T2 
5, 0m t= =  7099 278 15.623143 .00004444 92.22909 9.03890 
10, 2m t= =  2187 19 1.3615790 .00007155 40.24374 6.72804 
15, 0m t= =  530 45 0.8251351 .00009459 16.76781 2.83183 
20, 0m t= =  230 6 0.8293846 .00003977 11.95818 2.32617 

Table2 for example 6.2 

 Iter1 Iter2 R1 R2 T1 T2 
6, 0m t= =  1194 972 16.32030 .00000823 138.6159 65.8151 
15, 2m t= =  1701 13 2.467152 .00000684 236.6630 4.5171 
25, 0m t= =  471 27 3.703124 .00000829 88.0428 8.8303 
35, 6m t= =  313 216 6.064665 .00001026 87.3226 72.6157 

Table3 for example 6.3 

 Iter1 Iter2 R1 R2 T1 T2 
6, 0m t= =  5162 666 0.559396 .00008479 66.09368 13.6818 
15, 1m t= =  540 145 0.006053 .00009004 17.25598 3.60487 
25, 3m t= =  1075 117 0.004467 .00007116 28.25612 3.42415 
10, 1m t= =  2398 297 0.085080 .00009788 41.16828 10.9874 

From these tables we see that:  
 For the number of iterations: Weighted harmonic projection method is always better than harmonic 

projection method, respectively. 
 For the computational time: Weighted harmonic projection method is better than harmonic projection 

method. 
 For the computational Residual: Weighted harmonic projection method is better than harmonic 
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projection method and the convergence is better than that. 
 Therefore the results show that weighted harmonic projection algorithm works better than harmonic 

projection algorithm and it gives the results with high accuracy. 

7. Conclusion 
1. The first method (algorithm 4.1) does not have a good convergence, as was shown before; this 

method gives a little improvement to the approximated eigenvalues. 
2. The weighted harmonic projection algorithm (algorithm 5.1) has the following properties: 

a) This algorithm is very simple to run. 
b) It can be run on any PC. 
c) The eigenvalue problem can be computed with a high accuracy and less consuming time. 
d) The approximation obtained by this method can be improved more easily compared to the other 

method.  
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