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Abstract. This paper presents a novel algorithm for rate-complexity scalable multi-view image coding 
using an adaptive disparity-compensated (DC) wavelet lifting scheme. First, image regions of multi-view 
images are prioritized by counting matching points. The proposed algorithm selects either Haar, 5/3, or our 
proposed multiple picture reference DC wavelet lifting adaptively. The selection criterion is based on the bit 
budget constraint, the complexity budget constraint, and the priorities of image regions. Then, the low-pass 
and high-pass subbands, obtained from the DC wavelet lifting, are further decomposed by a spatial wavelet 
transform. The resulting wavelet coefficients are entropy encoded with the SPIHT codec. Experimental 
results show that the proposed algorithm provides an efficient adaptive framework for multi-view image 
coding.  

Keywords: Multi-view image coding, rate-complexity scalability, wavelet lifting, disparity-compensation, 

image feature matching. 

1. Introduction  
Recently, multi-view image coding has been extensively researched due to its broad variety of 

applications, including virtual tours on the Internet, three-dimensional navigation, presentation, and medical 
diagnosis [1-15]. Since a set of multi-view image consists of several ordinary images, it requires a huge 
amount of data for storage and transmission. A typical multi-view image, however, contains considerable 
redundancies among image views, since they represent the same scene from different viewpoints. The 
objective of multi-view image coding is to achieve high compression ratio, reducing these redundancies, 
while maintaining high image quality.  

Various algorithms have been proposed to encode multi-view image data. Magnor et al. [1] proposed a 
multi-view image coding algorithm based on texture coding and model-aided prediction. 3-D scene geometry 
is utilized for their algorithm. Tong and Gray [2] examined the DC predictive coding for multi-view images, 
which employs a block-based correspondence matching scheme. In [3, 6], the light field was taken into 
account for multi-view image coding. In [12, 13, 15], geometric structures in multi-view images, such as 
depth map, epipolar geometry, 3-D voxel model, were used for multi-view image coding. Also, there have 
been several attempts to utilize the wavelet transform in video coding and multi-view image coding [3, 6, 9, 
10], especially after the success of the motion compensation with wavelet lifting, which guarantees the 
invertibility at the synthesis side [16]. The main advantages of wavelet compression are its scalability and 
high energy compaction [16, 21]. For multi-view image coding, Girod et al. [3, 6] used the 4-D Haar and 5/3 
wavelet lifting schemes to perform the disparity compensation (DC) for light field compression. 
Anantrasirichai et al. [9, 10] employed the hybrid of Haar and 5/3 wavelet lifting in the block-based DC. In 
their work, the selection of DC mode is based on the minimum sum of absolute differences (SAD) criterion. 
However, they restricted reference image views only to adjacent views. In other words, their structure does 
not allow the usage of several views or combination of them for DC. Moreover, their work does not exploit 
the features, used in 3-D scene reconstruction, when performing the multi-view image coding. 

In general, when encoding multi-view image contents, only the rate (or bit budget) constraint is used as 
the encoding constraint. However, in practice, different encoders may have different encoding capabilities. 
An encoder with low computational capability cannot choose a complex algorithm to encode multi-view 
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images in a limited time. In contrast, an encoder with high capability has more degrees of freedom in 
choosing a complex coding algorithm to achieve better reconstructed multi-view image quality.  To be useful 
in practice, a multi-view image encoder should be flexible enough to adjust its complexity adaptively.  

In this work, we propose a novel algorithm for rate-complexity scalable multi-view image coding using 
an adaptive DC wavelet lifting scheme. Fig. 1 shows the overall architecture of the proposed algorithm. The 
proposed algorithm combines an image region prioritization scheme with an adaptive DC wavelet lifting 
technique to flexibly adjust both the bit rate and the encoding complexity. First, image regions are prioritized. 
The priorities of image regions are derived from a feature matching method. In this paper, the Harris corner 
detector [19] is used to find the matching points. Image regions with higher densities of matching points are 
assigned higher priorities in the DC wavelet lifting.       

 

Fig. 1: The architecture of the proposed multi-view image coding algorithm. 

Then, for each region, we select the mode of DC wavelet lifting among three modes: Haar, 5/3, or the 
proposed multiple picture reference modes. The mode is selected to achieve the minimum distortion given 
the constraint on the target bit rate, the encoding complexity, and the region priority. After the DC wavelet 
lifting is applied to reduce the redundancy among views, the discrete wavelet transform is applied to 
decompose low-pass and high-pass subbands, respectively. Finally, the wavelet coefficients are entropy 
coded with the SPHIT codec to generate the bitstream. Disparity vectors and DC modes are also entropy 
encoded by the arithmetic coding and sent to the decoder.  

The remainder of the paper is organized as follows. Section 2 explains the image prioritization via image 
feature matching, and Section 3 describes the DC wavelet lifting modes. Section 4 briefly discusses the 
entropy codec. Section 5 proposes a mode selection scheme, which supports rate-complexity scalability. 
Section 6 provides experimental results. Finally, the conclusions are drawn in Section 7. 

2. Image Region Prioritization via Image Feature Matching 
In general, multi-view images taken from real life scenes with multiple cameras contain a huge amount 

of redundant information. We attempt to prioritize image regions so that a region with less redundancy has a 
higher priority and is encoded with a more precise prediction scheme. On the other hand, a region with more 
redundancy is assigned a lower priority, since it can be effectively encoded even with a simple prediction 
scheme.  

We determine the priorities by counting the number of interesting points. Interesting points in an image 
view can be matched to interesting points in the other views. Notice that the regions, which have dense 
matching points, can be used to compute a depth map in 3-D reconstruction [19].  

To find interesting points, the Harris corner detector is employed [19]. It detects the local variation of 
intensity in both x and y directions. Let  denote the intensity of the pixel at position ( ,),( yxI )x y . Also, let 

and  denote the partial derivatives of  with respective to x and y, respectively. The local xI yI ), yx(I
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structure matrix is defined as  

                      ,                                                             (1) 

where  is a Gaussian filter. The above equation can be written in another form as 

                            ,                                                           (2) 
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vatives of the local intensity   

The local structure matrix L  in (2) is symmetric. Thus, it can b  diago lised by a matrix transformation. 
The resulting diagonal matrix has two non-negative eigenvalues 1  and 2 . If both eigenvalues are large, the 

intensity has strong variation in two orthogonal directions, which indicates that ( , )x y  is probably a corner 
pixel. Therefore, we compute 

                         ,                                                    (3) 

M is larger than a threshold, 
the 

2
1 1 1 1( )M k     

2det( ) ( ( ))L k trace L 

where k  is a small number. In this work, k  is set to 0.04 as suggested in [19]. If 
pixel at ( , )x y  is declared as an interesting point. The threshold is set to 400. 

Matching points are determined as follows. First, given an interesting point a )  in the reference 

view (the first view), we build up a window of 15 15

t ,( 00 yx

 pixels around er ),( 00 yx . Then, in each of 

the other views, we build up a window of the same size with center 0 0( , )

the cent

x y  , which is the position of the 

interesting point nearest to ),( 00 yx . We compute the sum of squared differences (SSD) between the 

corresponding pixels within the windows. Then, we move the center of the second window to the other 
interesting points within the search radius of 2 pixels. The center of the window yielding the minimum SSD 
is selected as the matching ese mode of DC 

3. 

point of (x ), 00 y . We later use th matching points to select the 

wavelet lifting adaptively. 

Multiple Picture Reference Disparity Compensated Wavelet Lifting 
Lifting schemes can be used to construct discrete wavelet transforms [20]. The subband decomposition 

into high-pass and low-pass components is achieved with a sequence of prediction and update steps in the 
lifting structure.  Suppose that we have N image views. We divide this group of image views into even 
views, 2iX , and odd views, 2 1iX  , which are  similar and highly correlated in general. In the context of 

multi-view image coding, the disparity estimation and compensation can be effectively integrated into the 
prediction and update steps.  

Figs. 2 and 3 show the first level decompositions of the Haar and 5/3 DC wavelet lifting, respectively. 
The Haar DC wavelet lifting is performed by using only a single adjacent view as a reference view, whereas 
the 5/3 DC wavelet lifting uses two adjacent views. Specifically, the Haar lifting uses image view 1i  or 
image view 1i  to reduce the redundancy in image view i , while the 5/3 lifting uses both of them
other hand, our proposed lifting mode enables us to use more than two reference 

. On the 
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Fig. 2: The first level decomposition of the Haar DC wavelet lifting. 
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Fig. 3: The first level decomposition of the 5/3 DC wavelet lifting. 

image views. To predict image view i  with the new lifting mode, we use image views , 1i  1i  , 3i  , 
, , , …. In other words, an even view is predicted from odd views, and an odd view is 

predicted from even views. In this way, it is guaranteed that all image views can be recovered at the 
synthesis side of the wavelet lifting. 
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Fig. 4: The unified structure of DC wavelet lifting for multi-view image coding. 

Fig. 4 shows the unified structure of DC wavelet lifting for multi-view image coding, which includes the 
Harr, 5/3, and our proposed lifting modes as special cases. In the unified structure, the number of reference 
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/ 2N / 2N

views can be flexibly chosen to obtain the best prediction. It also does not restrict reference views to adjacent 
image views only. In other words, non-adjacent views can be used as references as well. Suppose that a 

multi-view image consists of  even views and  odd views. Then, there are 
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possible choices for selecting reference image views for DC. The i-th low-pass ( ) and high-pass ( ) 

components can be written as 
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Table 1: Scaling factors in the prediction and update steps in different lifting modes.  

(  denotes the number of reference image views.) rN

Lifting modes ,m na  ,m nb  

Haar mode 1 
1

2
 

5/3 mode  
1

2
 

1

4
 

Proposed mode 
1

rN
 

1

2 rN
 

where  denotes the set of disparity vectors from image view n to image view m.  is the 

disparity compensated image of 

ˆ
n md 

ˆDC( , )m n mX d 

nX , which is obtained from the reference view nX  using . The 

scaling factors  and are used in the prediction and update steps, respectively. All the subscripts, 

denoting view indices, are restricted between 0 and N-1, where N is the number of image views. 

ˆ
n md 

,m na ,m nb

Note that, for the Haar and 5/3 wavelet lifting schemes,  is set to 1 and 0.5, and  is set to 0.5 and 

0.25, respectively. For our proposed lifting mode, we adopt the weighting scheme in [18]. Specifically,  

is set to the inverse of the number of reference views, and  is set to /2. Table 1 summarizes the 

scaling factors in the lifting modes. Fig. 5 illustrates the reference image views used in DC with Haar, 5/3, 
and our proposed lifting modes, when a number of views in a set of multi-view image are equal to five.  

,m na

,m nb

,m nb

,m na

,m na
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The complexity of DC wavelet lifting is determined by the block matching process. Suppose that the 
search range of each block is equal to R R  pixels, the block size is N N  pixels, and the image size is 
M M  pixels. The complexity, when we use only a single reference view, requires operations to 
perform block matching process. Therefore, if we use k reference views, the total complexity per block is 
equal to  operations. In this work, we treat (2  operations as one complexity unit. 

Therefore, we require k complexity units when we use k reference views.  

2 2(2 1)R M

2 2(2 1)k R M 21)R M 2

Different DC wavelet lifting modes require different levels of complexity. A multi-view image encoder 
can choose the mode based on its computational capability. For example, if the encoder has low processing 
power, it should choose simple DC wavelet lifting modes, which require a small number of complexity units. 
On the other hand, if the encoder is powerful, it can choose more complex DC lifting modes.  

4. Entropy Coding of Motion Vectors, Modes, and Residue Error 
The DC wavelet lifting decomposes multiple image views into low pass subbands and high pass 

subbands, reducing the inter-view redundancy. Each subband, however, still contains spatial redundancies, 
and thus it is decomposed further by the bi-orthogonal discrete wavelet transform (DWT), as shown in Fig. 6.  

The DWT coefficients are then compressed using the SPIHT coder [21], which is based on the set 
partitioning in hierarchical trees and encodes the coefficients in the bit-plane order from most significant bits 
to least significant bits. In general, the low pass subband images from the DC wavelet lifting contain more 
important information to human visual system than the high pass subband images. Therefore, we assign more 
bits to encode the DWT coefficients for a low pass subband image than those for a high pass subband image. 
If the total bit budget allocated to a low pass subband is equal to  , the total bit budget allocated to a 

high pass subband will be equal to 

LbudgetB ,

LbudgetHbudget BB ,,   , where 10   .  

The output bitstream of the SPIHT codec is transmitted to the decoder. At the decoder side, the SPIHT 
decoder obtains the low pass and the high pass subband images, which are, in turn, used to reconstruct the 
multi-view image at the synthesis side of the DC wavelet lifting. 

There are two parameters that should be also transmitted from the encoder to the decoder: disparity 
vectors and DC lifting modes. In this work, we encode disparity vector differences (DVD) and DC lifting 
modes using arithmetic coding. The disparity vector of the current block is predicted from the median of the 
disparity vectors of the left block, the top block, and the top right block. Then, we compute DVD, which is 
the difference between the disparity vector of the current block and the predicted one. We represent DVDs 
and DC lifting modes by code numbers, as shown in Table 2 and Table 3, respectively. The code numbers 
are then encoded using the arithmetic coder in [22] to obtain a bit stream. At the decoder, disparity vectors 
and DC lifting modes are decoded and then used to reconstruct the multi-view images. 

Table 2: The code numbers for DVDs. 

DVDs Code numbers 

0 
1 
-1 
2 
-2 
3 

… 

0 
1 
2 
3 
4 
5 
… 

 

 

Lifting modes Code numbers 

5/3 mode 

Haar_left mode 

Haar_right mode 

Proposed mode 

0 

1 

2 

3 

Table 3: The DC lifting modes and the corresponding code 
numbers. Haar_left and Haar_right denote the Haar mode 

when the left side image and the right side image are used as 
the reference, respectively. 
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(a) Haar mode                                                                                          (b) 5/3 mode 

 

(c) Proposed mode 

Fig. 5: Illustration of the reference image views in the Haar, 5/3 and our proposed lifting modes, when a number of 
image views are equal to five.  

 

Fig. 6: After the DC wavelet lifting, the low pass and high pass subbands still contain spatial redundancies. Thus, each 
subband image is decomposed further by the spatial DWT.  

5. Mode Selection with Scalable Rate and Complexity 

5.1. Problem Formulation 
The DC wavelet lifting modes determine the rate and the quality of reconstructed multi-view images, and 

the complexity of a DC mode is proportional to a number of reference frames in the compensation procedure. 
The mode should be selected to maximize the quality of reconstructed images, subject to both the rate and 
complexity constraints. Let  denote the distortion of the i th disparity compensated block, when it 

is compensated with mode 

),( iii BMD

iM  at bit rate . The mode iB iM  is selected from {Haar_left, Haar_right, 5/3, 

Proposed}, and the bit rate includes the bits for encoding the mode, disparity vectors, and residue errors. 

Also, let  denote the complexity to encode block i  with mode 
iB

( )i iC M iM . Notice that the complexities of 
Haar, 5/3, and the proposed modes are 1, 2, and N/2 complexity units, where N is the number of multiple 
views.  

Our objective is to obtain the highest image quality subject to both the rate and complexity constraints. It 
can be formally stated as 

Problem: For block , search for the DC mode i iM  and the bit rate  that minimize the distortion iB
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),( iii BMD                                                                         (6) 

subject to the constraints 

budgetii BB   ,                                                                (7) 

and  

 C M  ,                                                          (8) ( )i i i budgetC 

where  and C  are the bit budget and the complexity budget, and budgetB budget i  and i  are the priority factors 

of block i  for the bit budget and the complexity budget, respectively. The priority factors can be determined 
based on the number of matching points within the block.  

This constrained optimization problem can be solved by minimizing the Lagrangian cost function, given 
by 

( , ) ( , ) (bits comp i i i bit i comp i i )D M B B C M       ,                                               (9) 

where bit is the Lagrangian multiplier for the bit budget, and is the Lagrangian multiplier for the 

complexity budget.  
comp

5.2. Problem Solution 
To find out the exact solution that minimizes (9), we need the relationship between the bit budget, the 

complexity, and the distortion. However, the accurate estimation of the relationship requires a huge amount 
of computations. This is because we need consider all possible modes and bit rates.  

Therefore, in this work, we instead obtain an approximate solution by constructing universal rate-
distortion and complexity-distortion curves from a training set of multi-view images. These trained rate-
distortion and complexity- distortion curves approximate the rate-distortion and complexity-distortion 
characteristics of incoming multi-view images. These trained curves are shown in Figs. 7 and 8, which were 
obtained from three sets of multi-view images: Hotel, Marker, and Teddy.  

 
Fig. 8: The rate-distortion curves of different 
DC wavelet lifting modes. 

 Fig. 7: The complexity-distortion plot of different 
DC wavelet lifting modes. 

 
Using these trained curves, we select the DC wavelet lifting mode and the bit rate in two steps. First, 

given the complexity budget, we select the mode achieving the lowest average distortion from the 
complexity-distortion curve. Then, with the selected mode, we choose the rate-distortion curve to determine 
the target bit rate. For example, suppose that there are totally five views in a set of multi-view images. If the 
complexity budget of a block is equal to 3 units, the proposed adaptive DC mode is selected, since it 
provides the lowest average distortion within the budget. Then, the rate-distortion curve corresponding to the 
proposed adaptive DC mode is selected. Finally, given the bit budget constraint, the optimal bit rate is 
obtained from the rate-distortion curve.  
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Fig. 9: The example of rate-distortion curves for different DC wavelet lifting modes. In this example, the 

optimal bit rate, corresponding to a Lagrangian multiplier bit , is found. 

The detailed algorithm can be stated as follows. 

Algorithm: (Rate-Complexity Optimized Mode Selection to Achieve the Highest Picture Quality) 

Step 1: Given the total bit budget and complexity budget for an entire frame, distribute them to all blocks by 
considering the priority factors i  and i .  

Step 2: For each block in the frame, peform 

Step 2.1: Given the complexity budget, select the mode, providing the minimum average distortion, 
from the trained complexity-distortion plot. Let *

iM  denote the selected mode.  

Step 2.2: Choose the trained rate-distortion curve of the mode *
iM . Use the bi-section algorithm in [23], 

to search for the optimal bit rate corresponding to a Lagrangian multiplier bit . Let  denote the optimal bit 
rate. Fig. 9 illustrates the process of determining the optimal bit rate, assuming the selected mode in Step 2.1 
is M

*
iB

3.  

Step 2.3: Encode the block using *
iM  and . *

iB

Please acknowledge collaborators or anyone who has helped with the paper at the end of the text. 

6. Experimental Results 
To evaluate the performance of the proposed rate-complexity scalable algorithm, we experiment on both 

synthetic and real multi-view images. The synthetic sequence is the hotel image. The real sequences are the 
marker and teddy images. These images consist of five views and have the size of 512ⅹ512 pixels. The 
performance of the proposed algorithm is evaluated in terms of DC prediction efficiency and PSNR. We 
compare the PSNR performances of the proposed algorithm under different rate and complexity budgets. 
Note that we use the block size of 4x4 pixels and the integer-pel search accuracy for all DC modes. The ratio 
of the bit allocation in low and high subbands is equal to 3 to 2. In other words,  defined in Section 4 is set 
to 0.6.  

As mentioned in Sections 2 and 5, the regions with high density of matching points are given higher 
priorities. Fig.10 shows the computed matching points of the hotel image. Fig. 10 (c) depicts the matching 
points obtained from Fig. 10 (a) and Fig. 10 (b). We divide image blocks to two classes: the class 
corresponding to high density matching points and the class corresponding to low density matching points. 
In the following tests, the complexity priority factor i  for blocks with high matching point densities is set 

to be twice higher than the other blocks with low densities. The bit priority factor i  is set to be the same for 

all blocks.  To be more specific, i is equal to 2 and 1 for blocks with high and low matching point densities, 

respectively. i is set to be 1 for all blocks. 

Figs. 11 and 12 show the high pass subbands of the hotel and the teddy images, respectively. They 
represent residue errors after the DC prediction. The normalized residue energy is defined as the squared sum 
of residue pixel errors, divided by the number of pixels. We see that residue errors are reduced, when we 
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allow a higher complexity encoder to exploit more complex DC wavelet lifting modes. Fig. 13 compares the 
subjective quality of the teddy sequence under different complexity budgets. We can conclude from these 
experimental results that, if the encoder increases its complexity, the better performance can be achieved. 

Figs. 14, 15, and 16 show the average PSNRs over all image views for the hotel, teddy and marker 
images, respectively, in terms of bits per pixel (bpp) under different complexity budgets. The complexity 
budgets for scenario 1 to scenario 5 are 16384, 24576, 32768, 40960, and 49152 units per image, 
respectively, which correspond to the average complexity budgets of 1.0 unit, 1.5 units, 2 units, 2.5 units, 
and 3.0 units per block. Scenario 1 has the lowest complexity budget, 1.0 unit per block, in which the only 
possible DC mode is the Haar mode [9,10]. On the other hand, in scenarios 2~5, the mode for a block can be 
selected from the Haar, 5/3, and the proposed modes, depending on the given complexity budget. It is 
observed that the better performance can be achieved when the encoder uses bigger complexity and rate 
budgets. Note that, at low bit rates, the performance gains are not significant even though we increase the 
complexity budgets. This is because the additional bits for more disparity vectors in the advanced modes 
become a heavier burden at low bit rates. Figs. 14, 15, and 16 indicate that the proposed algorithm can 
support different bit budgets and complexity budgets efficiently and adaptively. Note that bit rates in Figs. 14, 
15, and 16 include all the bits for encoding wavelet coefficients, disparity vectors, and lifting modes. 

  
                                                    (a)               (b)                                    (c) 

Fig. 10: (a) Interesting points from the first view (726 points).  (b) Interesting points from the second view (730 points). 
(c) Matching points between the first and the second views (488 points). 

          
 (a)                                                         (b) 

 
                                                                                                  (c) 

Fig. 11: A high pass subband of the hotel image: (a) Haar mode (normalized energy = 19.79, complexity = 1 unit per 
block), (b) 5/3 mode (normalized energy = 10.341, complexity = 2 units per block), and (c) the proposed adaptive 

wavelet lifting (normalized energy = 5.095, complexity = 3 units per block). 

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, Vol. 4 (2009) No. 3, pp 211-223 221
 

 
                                                                       (a)                            (b) 

 
(c) 

Fig. 12: A high pass subband of the Teddy image. (a) Haar mode (normalized energy = 27.98, complexity = 1 unit per 
block), (b) 5/3 mode (normalized energy = 13.92, complexity = 2 units per block) and (c) the proposed adaptive wavelet 

wavelet lifting (normalized energy = 7.94, complexity = 3 units per block).  

       
(a)                            (b) 

        
(c)               (d) 

Fig. 13:Reconstructed teddy images at the bit rate of 1.0 bpp. (a) Haar mode (complexity = 1 unit per block), (b) 5/3 
mode (complexity = 2 units per block), (c) the proposed adaptive wavelet lifting (complexity = 3 units per block), and 

(d) the original image. 
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Fig. 14: The PSNR performances on the hotel image. In scenarios 1~5, the average complexity budgets are 1.0, 1.5, 2.0, 
2.5, and 3.0 units per block, respectively. 
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(a)                                                                                        (b) 

Fig. 15: The PSNR performances on the teddy image(Fig a) and marker image(Fig b). In scenarios 1~5, the average 
complexity budgets are 1.0, 1.5, 2.0, 2.5, and 3.0 units per block, respectively. 

7. Conclusions 
We proposed a rate-complexity scalable framework using adaptive DC wavelet lifting technique for 

multi-view image coding. The proposed algorithm smartly selects a proper DC mode among the Haar, 5/3, or 
our proposed wavelet lifting for each block subject to the complexity budget and bit budget constraints. The 
higher PSNR performance can be achieved by increasing the complexity, the bit rate, or both. Therefore, this 
prototype scheme is very scalable, which can be applied in various applications. The simulation results on 
test images demonstrated that the proposed algorithm can support the rate-complexity scalability efficiently.  
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