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Abstract. This paper investigates the synchronization and anti-synchronization behaviour of two identical 
double-hump Duffing-Van der Pol oscillator (DHDVP) evolving from different initial conditions using the 
active control technique based on the Lyapunov stability theory (LST) and the Routh-Hurwitz criteria (RHC). 
The designed controllers, with three different choices of the coefficient matrix of the error dynamics that 
satisfy the LST and RHC, are found to be effective in the stabilization of the error states at the origin, thereby, 
achieving synchronization and anti-synchronization between the states variables of two DHDVP oscillators. 
Interestingly, one of the choices leads to a single control function, thereby, reducing controller complexity for 
easy implementation. The results are validated  by numerical simulations. 
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1. Introduction 
In the last two decades, considerable research has been done in nonlinear systems and their various 

properties. One of the most important properties of nonlinear dynamical systems is synchronization, which 
classically, represents the entrainment of frequencies of oscillators due to weak interactions, [1-3]. Studies in 
this field are partly motivated by experimental realization in lasers, electronic circuits, plasma discharge and 
chemical reactions [2-4].  

For a system of two coupled chaotic oscillators, the master (  yxfx , ) and the slave (  yxgy , ), 

where x  t  and y  t   are phase space or state variables, and  and f g  are the corresponding nonlinear 

functions, synchronization in a direct sense implies    t ytx  0 as t   . When this occurs the 

coupled systems are said to be completely synchronized. Chaos synchronization is related to the observer 
problem in control theory [5]. The problem may be treated as the design of control laws for full chaotic 
observer (the slave system) using the known information of the plant (the master system) so as to ensure that 
the controlled receiver synchronizes with the plant. Hence, the slave chaotic system completely traces the 
dynamics of the master in the course of time. 

On the other hand, anti-synchronization (AS) of two coupled systems  yxfx ,  (master system) and 

 (slave system) means  yxgy ,     tytx   0 as t   . This phenomenon has been investigated 

both experimentally and theoretically in many physical systems [6-13]. A recent study of the AS 
phenomenon in non-equilibrium systems suggests that AS could be used as a technique for particle 
separation in a mixture of interacting particles [12]. 

In general, various techniques have been proposed for achieving stable synchronization and ant-
synchronization between identical and non-identical systems. Notable among these methods, the active 
control scheme proposed by Bai and Lonngren [14] has received a considerable attention in the last ten years. 
Applications to various systems abound, some of which include the electronic circuits, which model a third-
order “jerk” equation [15], Lorenz, Chen and Lü system [16], Geophysical systems [17], nonlinear equations 
of acoustic gravity waves (Lorenz-Stenflo system) [18], Qi et al system [18,19], Van-der Pol-Duffing 
oscillator [20,21], forced damped pendulum [22], nuclear magnetic resonance (NMR) modeled by the Bloch 
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equations [23], Parametrically excited oscillators [24,25],  permanent magnet reluctance machine [11], 
inertial ratchets [12,26], and most recently in RCL-shunted Josephson junction [27], Newton-Leipnik system 
[28] and modified projective synchronization [29]. 

Recently Lei et al [24] applied the Lyapunov stability theory and the Routh-Hurwitz criteria to active 
control in order to achieve stable synchronization. This version of the active control, which has the 
advantage of easy implementation has been applied to synchronize a few systems [19,24,25]. 

The Duffing-Van der Pol oscillator (DVP) models describe periodically self-excited oscillators in 
Physics, engineering, electronics, biology, neurology and many other disciplines [30] and references therein . 
The dynamics of the system include the exhibition of strange attractors, Hobf and Neimark-Sacker 
bifurcations, Smale horseshoe chaos, multi-stability, etc [30-37] and references therein. While the DVP 
model has been extensively studied in the double-well and single-well configurations, it has not been studied 
in the double-hump configuration. The double hump is the unbounded case which can lead to chaotic escape. 
However, Tchoukuegno et al. [38] showed that chaotic escape can be inhibited by introducing a parametric 
control. Moreover if the external forcing is not above a certain threshold value there will be no chaotic 
escape. 

The aim of this article is to use the active control technique based on the Lyapunov stability theory and 
the Routh-Hurwitz criteria to synchronize and anti-synchronize two identical double-hump Duffing-Van der 
Pol oscillators evolving from different initial conditions. To the best of my knowledge this has not been done. 
The rest of the paper is organized as follows: section 2 describes the DVP model, sections 3 and 4 deal with 
the synchronization and anti-synchronization of the DVP respectively while section 5 concludes the paper. 

2.  Description of the Duffing-Van der Pol oscillator model 
The Duffing-Van der Pol oscillator (DVP) with external excitation is described by the following 

differential equation:  

   
dx

xdV
xxx   21 =  tfg ,,                                                     (1) 

where  >0 is the damping parameter, the dots over the state variable  tx  denote derivative with respect to 

time , t  tf ,, g   is the periodic external excitation of amplitude and angular frequency f  , and  xV , 
the potential, is approximated by a finite Taylor series as follows.  

 xV = 42

4

1

2

1
xx                                                                   (2) 

where   and   are constant parameters. System (1) is a generalization of the classic Duffing-Van der Pol 
oscillator equation and can be considered in at least three physically relevant situations wherein the potential 
(2) is a single-well ( >0,  >0), double-well ( <0,  >0) and double-hump ( >0,  <0). In this article the 
double-hump configuration of the potential (2) as shown in Fig. 1 is considered.  By substituting the potential 
(2) into (1) and letting the external excitation  t,fg , = tf cos , (1)  becomes 

  321 xxxxx    = tf cos                                                    (3) 

Using the definitions 21 xxx    and 2xx    (3) becomes 

21 xx   

  3
112

2
12 1 xxxxx   + tf cos                                                  (4) 

System (4) exhibit chaotic dynamics in the double-hump configuration for the parameter values  = 4.5, 
 = −0.79,  = 0.1, = 0.079 and f  = 0.675, as shown by the chaotic attractor in phase space, Fig. 2. 
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Fig. 1: The double-hump configuration of the potential (2) with parameter values           =1,  = −0.5 
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Fig. 2: Phase portrait showing the chaotic attractor of the double-hump Duffing-Van der Pol oscillator for parameter 
values  = 0.5,  = −0.5,  = 0.1 

3. Synchronization of two double-hump Duffing-Van der Pol oscillators 

3.1. Formulation of the active controllers 
The method employed here was used in references [24,25]. Let system (4) be the master system and the 

following system be the slave system. 

21 yy  +  tu1  

  3
112

2
12 1 yyyyy   + tf cos +  tu2                                             (5) 

where  and  are control functions to be determined. Subtracting (4) from (5) and using the 

notation  and  we have  

 tu1

1e 
 tu2

1x1y 222 xye 

21 ee  +  tu1  

 22 ee   2
2
12

2
1 xxyy   1e  3

1
3
1 xy  +                                 (6)  tu2

We now re-define the control functions such as to eliminate terms in (6) which cannot be expressed as 
linear terms in  and  as follows: 1e 2e
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   tvtu 11   

 t2u  =  2
2
12

2
1 xyy  x  +  3

1xy 3
1   +  tv2                                        (7) 

Substituting (7) into (6) we have 

 tvee 121   

122 eee    +  tv2                                                                (8) 

Eq.(8) is the error dynamics, which can be interpreted as a control problem where the system, to be 
controlled is a linear system with control inputs  tv1  = 1v     tete 21 ,  and  tv2 = . As long 

as these feedbacks stabilize the system, 

2v     tete 21 , 
  2, 1, ii te 0 as t . This simply implies that the two systems 

(4) and (5) evolving from different initial conditions are synchronized. As functions of  and  we choose 

 and  as follows: 
1e 2e

 tv1  tv2

 
 






tv

tv

2

1 =D
 
 






te

te

2

1                                                                   (9) 

where D= , is a 22 constant feedback matrix to be determined. Hence the error system (8) can be 

written as 









dc

ba

 
 






te

te

2

1




=C

 
 






te

te

2

1                                                                 (10) 

where C= , is the coefficient matrix. 










dc

ba


1

According to the Lyapunov stability theory and the Routh-Hurwitz criteria, if 

                             da <0 

    dabc   1 <0                                                        (11) 

then the eigenvalues of the coefficient matrix of error system (8) must be real or complex with negative real 
parts and, hence, stable synchronized dynamics between systems (4) and (5) is guaranteed. Let 

 da = −E  

    dabc   1 = − E                                                         (12) 

where >0 is a real number which is usually set equal to 1. There are several ways of choosing the constant 
elements of matrix D in order to satisfy the Lyapunov stability theory and the Routh-Hurwitz 
criteria (11). The following common choices are easily obtained from (12). 

E
, , ,a b c d

1=  D










 E

E 0
, 2= D








 EE 

00
, 3=                     (13)   











0

0

EE

E




D

3.2. Numerical simulation 
 

Using the fourth-order Runge-Kutta algorithm with initial conditions ( , )=(0.1,0.2), 

( , )=(1.3,1.4), a time step of 0.001, 
1x 2x

1y 2y E =1, and parameter values as in Fig. 2 to ensure chaotic dynamics 

of the state variables, the systems (4) and (5) with  tu1  and  tu2  as defined in (7) were numerically solved 
for each of the cases D1, D2, D3 of (13). The results obtained show that the error states oscillate chaotically 
when the controllers are switch off, Fig. 3, and when the controllers are switched on at t = 0, Fig. 4, the error 
states converge to zero for each of the matrices D1, D2, D3, thereby, achieving synchronization between 
systems (4) and (5). Therefore, any 22 constant matrix that satisfies (11) can bring about synchronization 
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between systems (4) and (5). This is also confirmed by the convergence of the synchronization quality 
defined by  

2
2

2
1 eee                                                                          (14) 

Even though the synchronization time , defined as the time taken for  to decrease to , is slightly 

longer for D
st

s

e 610

2 ( =29.01) than for Dst

u2

1 ( =27.83) and Dt 3 ( =27.58), the fact that Dst 2 gives only a single 

control function , thereby, reducing controller complexity makes this result interesting. The problem of 
controller complexity is a very crucial issue in the practical implementation of control techniques [39], since 
the cost implication, the density requirement for designing controllers and the need to make the complexity 
of the controller to be, at least comparable to or less than the device being controlled are fundamental, if the 
controlling technique is desired to serve a useful purpose.  
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Fig. 3: Time series of the error states ,  and the error propagation e with control switched off. 1e 2e
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Fig. 4: Time series of the error states ,  and the error propagation with control switched on at 1e 2e e t = 0 for the cases 

D1, D2, D3 

 

4. Anti-synchronization of two double-hump Duffing-Van Pol der  oscillators 

4.1.  Formulation of the active controllers 
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Again we consider systems (4) and (5) as the master system and slave system respectively. Adding (4) 
and (5) and using the notation  and 111 yxe  222 yxe   we obtain  

21 ee  +  tu1  

 22 ee   2
2
12

2
1 xxyy   1e  3

1
3
1 xy  +  tu2                                 (15) 

We again re-define the control functions such as to eliminate terms in (15) which cannot be expressed as 
linear terms in  and  as follows 1e 2e

   tvtu 11   

 tu2 =  2
2
12

2
1 xxyy  +  3

1
3
1 xy  +  tv2                                            (16) 

Substituting (16) into (15) we obtain (8) exactly. The rest of the steps taken from (8) to (13) also follow 
exactly.  

4.2.  Numerical simulation 
Using the fourth-order Runge-Kutta algorithm with the same initial conditions, time step, and parameter 

values as in subsection 3.2, systems (4) and (5) with  tu1  and  tu2  as defined in (16) were computed for 
the case D2 of (13) since D2 leads to a single control function, thereby, reducing controller complexity for 
easy implementation. The results obtained show that there is not any form of synchronization between the 
state variables   of the master system and 21 , xx  21 , yy  of the slave system when the controller is 

deactivated, Fig. 5, and when the controller is activated at t = 0, there is anti-synchronization between  and 

 as well as between  and , Fig. 6. The dynamics of   and  are controlled to anti-synchronize with 

those of  and  respectively. 
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Fig. 5: Time series showing non-synchronous dynamics between the state variables  (solid) & (dashed) and 

(solid) & (dashed) when the control is switched off. 
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Fig. 6: Time series showing anti-synchronous dynamics of the state variables (solid) & (dashed) and (solid) & 

(dashed) when the control is switched on at t =0. 
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5. Concluding Remarks 
This paper has investigated the synchronization and anti-synchronization behaviour of two identical 

double-hump Duffing oscillators (DHDO) evolving from different initial conditions via the active control 
technique based on the Lyapunov stability theory (LST) and the Routh-Hurwitz criteria (RHC). Three 
different choices of the coefficient matrix of the error dynamics that satisfy the LST and RHC were made. 
All the three choices were effective in the stabilization of the error states at the origin, thereby, achieving 
synchronization and anti-synchronization between the states variables of the two DHDO’s. Interestingly one 
of the choices led to a single control function, thereby, reducing controller complexity for easy 
implementation. The results were validated by numerical simulations. 
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