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Abstract. The control problem of a novel hyperchaotic system is investigated. The linear, speed, nonlinear, 
nonlinear doubly-periodic function feedback controls are used to suppress hyperchaos to unstable equilibrium. 
Limit cases of doubly-periodic function are considered and the hyperbolic function and trigonometric 
function feedback control laws are derived. The Routh–Hurwitz criterion is applied to study the conditions 
of the asymptotic stability of the controlled hyperchaotic system. Based on Matlab program, numerical 
simulations are presented to demonstrate the effectiveness of the proposed controllers. 

Keywords: Hyperchaos control; New hyperchaotic system; Feedback control; Routh–Hurwiz criterion 

1. Introduction  
Since Lorenz found the first classical chaotic attractor in 1963 [1], chaos, as a very interesting nonlinear 

phenomenon has been intensively studied in science and engineering. Chaotic system is a very complex 
nonlinear dynamical system and its response possesses some characteristics, such as excessive sensitivity to 
initial conditions, broad spectral of Fourier transform, and fractal properties of the motion in phase space [2]. 
Due to the theoretical and practical applications of chaos in economics, ecology, lasers, plasma technologies, 
mechanical and chemical engineering, human brain dynamics [3], heart beat regulation [4], 
telecommunications, and micro-electro-mechanical systems [5], etc. Controlling these complex chaotic 
dynamics for engineering applications has emerged as a new and attractive field and has developed many 
profound theories and methodologies. Nowadays, many different techniques and methods have been 
proposed to achieve chaos control, such as OGY method [6], time-delay feedback method [7], Lyapunov 
method [8], impulsive control method [9], sliding method control 10], differential geometric method [11], 
H control [12], adaptive control method [13], chaos suppression method [14], and so on. Among them, the 
feedback control is especially attractive and has been commonly applied to practical implementation due to 
its simplicity in configuration and implementation. 

However, most of the works mentioned so far involved mainly with low-dimensional chaos systems with 
only one positive Lyapunov exponent. Hyperchaotic system, possessing more than one positive Lyapunov 
exponents, has more complex behaviors and abundant dynamics than chaotic system. How to realize control 
and synchronization of hyperchaotic systems is an interesting and challenging work. Many attempts have 
been made to control hyperchaos and achieve synchronization of hyperchaos in +hyperchaotic systems [15–
16]. Recently, Yan [17] suppressed a new hyperchaotic Chen system to unstable equilibrium by using 
feedback control method. Cai and Wang [18] constructed a new hyperchaotic system by introducing an 
additional state variable into the third-order chaotic system. The four-dimensional autonomous hyperchaotic 
system is described by 
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where a, b, c, k, h are constant parameters. When parameters a=27.5, b=3, c=19.3, h=2.9 and k=3.3, system 
(1) is hyperchaotic, Its Lyapunov exponents can be obtained  
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 LE1=1.6170, LE2=0.1123, LE3=0, LE4= -12.8245.

The Lyapunov dimension of this system (1) is  
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Obviously, the Lyapunov dimension of this new hyperchaotic system is also fractional dimension. The 
new system (1) shows hyperchaotic behavior, as depicted in Fig.1(a) ~ (b).The system(1) has only one 
equilibrium E(0,0,0,0,), and the equilibrium is an unstable saddle node under these parameters[18].  

In this paper, we will control hyperchaos in the new hyperchaotic system (1). The linear feedback control, 
speed feedback control, nonlinear feedback control, nonlinear doubly-periodic function feedback control, 
nonlinear hyperbolic function feedback control and trigonometric function feedback control are used to 
suppress hyperchaos to unstable equilibrium. Moreover, numerical simulations are applied to verify the 
effectiveness of chosen controllers. 

 

(a)  x-y-z  plane                                                                             (b) y-z-u  plane 

Fig. 1: Phase portraits of hyperchaotic system (1), with a=27.5, b=3, c=19.3, h=2.9 and k=3.3 

2. Controlling hyperchaotic attractor to equilibrium E(0,0,0,0)  
In this section, we will control hyperchaotic system to equilibrium E(0,0,0,0,) by using different 

nonlinear feedback methods. Suppose that the control system is the following form: 
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In which ui (i=1,2,3,4,) are external control inputs. By choosing the suitable input functions ui 
(i=1,2,3,4,), the hyperchaotic trajectory (x ,y, z, u) of system (2) will be dragged to E(0,0,0,0,). 

2.1. Linear feedback control  
We assume that ui (i=1,2,3,4,) are of the linear forms u1= -k1x,   u2= -k2y,   u3= -k3z,   u4= -k4u,where 

ki(i=1,2,3,4) are feedback coefficients. The system (2) is rewritten as 
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Whose Jacobi matrix is 
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The characteristic equation of matrix (4) is 
3 2
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According to Routh–Hurwitz criterion, the real parts λ are negative if and only if 

+k3>0,  b1>0,  b3>0,  b1b2>b3.                                                               (5) 

Thus, when a=27.5, b=3, c=19.3, h=2.9 and k=3.3, and k1, k2, k3, k4 satisfy (5), the controlled 
hyperchaotic system (3) is asymptotically stable at equilibrium E(0,0,0,0,). 

2.2. Speed feedback control  
We assume that  and u1 2 3 0u u u   4 is the speed form 4 1u k   , where k1 is a speed feedback 

coefficient. The controlled hyperchaotic system (2) is rewritten as 
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The Jacobi matrix of system (6) is 
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The characteristic equation of matrix (7) is 
3 2
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where 

1 1 2 1 3, ,b a c k b ak ab b ak       

When a=27.5, b=3, c=19.3, h=2.9 and k=3.3, it is easy to see that b3=90.75>0. According to the Routh–
Hurwitz criterion, 

1 1 2 30, 0b b b b    

i.e., 

k1>3.2872                                                                                                                         (8) 

The real parts λ of Jacobi matrix (7) with the equilibrium E(0,0,0,0,) are all negative. Therefore, when 
a=27.5, b=3, c=19.3, h=2.9 and k=3.3, and k1 satisfy (8), the controlled hyperchaotic system (6) is 
asymptotically stable at equilibrium E(0,0,0,0,).  

2.3. Nonlinear feedback control 

We assume that  and u2 1 4 2
ˆ ,u k y u k    1=u3=0, where =β
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d.  
feedback gain), the speed of hyperchaotic sate is controlled to the equilibrium E will varies when values of 
β1, β2 is altere

The controlled hyperchaotic system (2) is rewritten as 
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Then, Lyaponov function is constructed as follows: 
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    To make the system (9) asymptotically stable, the matrix P should be positive definite, based matrix 
theory, when P satisfy 
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  P is a positive definite matrix, thus V  is negative semi-definite, however, we can’t get immediately the 
controlled system (9) is asymptotically stable at equilibrium E(0,0,0,0,). 
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 .even x, y, z, u will be asymptotically converged to zero, therefore, the 

controlled hyperchaotic system (9) is asymptotically converged to equilibrium E(0,0,0,0,). 
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 Nonlinear doubly-periodic function, hyperbolic function and trigonometric function 
feedback control  

We assume that  and u1 2 3 0u u u  
; )m

4 is the nonlinear doubly-periodic function 

form u k , where k4 1 (sn x y    1 is a feedback coefficient, 1 ( ;k sn x y m    is Jacobi elliptic sine 

function, and m(0<m<1) is the modulus of Jacobi elliptic function. Thus the controlled hyperchaotic system 
(2) is rewritten as 
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The Jacobi matrix of system (10) is 
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The characteristic equation of matrix (11) is 
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When a=27.5, b=3, c=19.3, h=2.9 and k=3.3, obviously, a-c=8.2>0, ak1=90.75>0.  

If 
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k1>626.8,                                                                        (12) 

the Jacobi matrix (11) has four negative real part eigenvalues. 

The Jacobi elliptic function will degenerate to hyperbolic function and trigonometric function when the 
modulus reduced to be unity and zero. We will consider two kinds of limit cases in system (8). 
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i.e., u4 is the hyperbolic function form )tanh(14 yxku  , where k1 is a feedback coefficient. 

As , the system (10) degenerates to 0m
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i.e., u4 is the trigonometric function form )sin(14 yxku  , where k1 is a feedback coefficient. 

It is easy to see that the systems (10), (13), (14) possess the same Jacobi matrix. Therefore, when a=27.5, 
b=3, c=19.3, h=2.9, k=3.3, and k1 satisfy (12), the controlled hyperchaotic systems (10), (13), (14) are 
asymptotically stable at equilibrium E(0,0,0,0,).  

3. Numerical results 
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To verify the effectiveness and feasibility of the control approach, by using Matlab program, the 
numerical simulations have been completed. In the simulations, we choose the parameters a=27.5, b=3, 
c=19.3, h=2.9 and k=3.3,  

(1) Linear feedback control 

The initial states of the controlled system (3) are selected as (-0.6, -0.6, -0.5, 0.5) and the corresponding 
feedback coefficients are given by 0,10,25,25 4321  kkkk , The behaviors of the state variable (x; 

y; z; u) of the controlled hyperchaotic system (3) with time are displayed in Fig.2. 

(2) Speed feedback control  

The initial values of the system (6) are selected as (1.0, 0.2, 10.0, -10) and the corresponding feedback 
coefficient is given by k1=30. The behaviors of the state variable (x; y; z; u) of the controlled hyperchaotic 
system (6) with time are illustrated in Fig. 3. 

 

  

Fig. 2: The state of system (3).                                   Fig. 3: The state of system (6). 

(3) Nonlinear feedback control. 

The initial states of the controlled system (9) are selected as (5, 4, 3, 1,) and the corresponding feedback 
gain coefficients are given by 1 21, 4   and 1 25, 8   , The behaviors of the state variable (x; y; z; 

u) of the controlled hyperchaotic system (9) with time are displayed in Fig. 4.(a)~(b). 

 

 

 

 

 

 
(a)β1=1,β2=4                                                                 

 

                                                                                             (b) β1 =5, β2 =8 

Fig. 4: The evolution of the controlled system (9) for the feedback control gain β1, β2 

(4) Nonlinear doubly-periodic function, hyperbolic function and trigonometric function feedback 
control.  

The initial values of the system (10), (13), (14) are selected as the same values (-0.3, -0.1, 5.0, 10.0) and 
the corresponding feedback coefficient is given by k1=900. Figs. 5–7 show the simulation results. 
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Fig. 5: The state of system (10) (m=0:8).                           Fig. 6: The state of system (13). 

 

Fig. 7: The state of system (14). 

4. Conclusion 
The control problem of a new hyperchaotic system is investigated. The linear feedback control, speed 

feedback control, nonlinear feedback control and nonlinear doubly-periodic function feedback control are 
used to suppress hyperchaos to unstable equilibrium E(0,0,0,0,). Limit cases of doubly-periodic function are 
considered and hyperbolic function; trigonometric function feedback control laws are derived. The Routh–
Hurwitz criterion is used to study the conditions of the asymptotic stability of the controlled hyperchaotic 
system. Furthermore, numerical simulations are presented to verify the effectiveness of the proposed 
controllers. These control methods are also used to control other chaos or hyperchaotic systems. 
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