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Abstract. Ant algorithm optimization is used to solve a general class of optimal control problems with 
single input control. The discretized form of the optimal control problem is converted to a quasi quadratic 
assignment problem in the time-control space. By applying the ant optimization algorithm on this problem, a 
piece-wise constant approximation is obtained for the optimal control. Implementation of the method and 
numerical results are also discussed. 
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1. Introduction  
In early decades optimal control theory as one of the most applicable and technological issues has been 

taken into consideration. The analytical solutions for problems of optimal control are not always available. 
Thus to find approximate solution is the most logical way to solve them. To this end, various approaches 
such as discretization [14], measure theory [10], polynomial parametrization [9, 8], etc., have been proposed. 
Some heuristic algorithms such as genetic algorithms [7] have been also applied to solve optimal control 
problems (OCP's). Our aim is to apply Ant Colony Optimization (ACO) method to construct approximate 
optimal control function for a general class of OCPs. To implement this method we first discretize the time-
control space. This control discretization enables us to examine different choices of controls to find the 
optimal one in assignment of constant controls to sub-intervals. This assignment nature of the problem 
encourages us using a meta heuristic as ACO method to solve the problem. The advantages may be 
encounter as the method is self-starting i.e. it doesn't need any approximate solution to be started, and the 
type of dynamical system and performance index doesn't have serious effect on the method because it uses 
direct evaluations of controls. 

Metaheuristics incorporate concepts from very different fields such as genetics, biology, artificial 
intelligence, mathematics and physics and neuro-science among others. Examples of methahuristics include 
simulated annealing, tabu search, iterated local search, variable neighborhood search algorithms, greedy 
randomized adaptive search procedures and evolutionary algorithms. 

ACO is currently one of the best available meta-heuristic for some problems and is amongthe most 
competitive approaches for discrete optimization problems [1, 4, 6]. The essential framework of the ACO is 
search over several constructive computational threads, based on a memory structure incorporating the 
information about the effectiveness of previously obtained fragments of solutions. This structure is 
maintained dynamically by deposit, evaporation and detection of conceptual pheromone. 

Several algorithms have been proposed in the literature following the ACO metaheuristic, (see [3]). The 
first ACO algorithm, called Ant System (AS) [6], was initially proposed by Dorigo et al. and then this 
algorithm was applied to the well-known traveling salesman problem as a benchmark problem [5]. AS has 
been the prototype of many following ACO algorithms with which many other NP-hard combinatorial 
optimization problems can be solved successfully. Ant algorithms have also been applied to the Facilities 
Layout Problem which can be shown to be a Quadratic Assignment Problem (QAP). 
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Fig. 1. A typical control function in time-control discretization 

2. Discretized Optimal Control Problem  
There are many examples in science and engineering involving optimal control problems. 

Mathematically, an OCP's deals with optimizing a performance index having the pair state control satisfying 
a dynamical system. There may be also bounding conditions on the state and some restrictions on control. 
Different types of the performance index and dynamical systems accompanied with various bounding 
conditions lead to a wide variety of definitions for OCPs. Exact and numerical methods for solving OCPs are 
highly dependent to the form of the problem. As we are going to develop a numerical method for solving 
general OCPs, let consider the minimizing of a performance index like 
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where is given and  is an integrable function with no restriction about linearity and differentiability. 

The state and control satisfy a dynamical system as 
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with and as initial and final given conditions. The single valued control function gives 

its values from a known interval . 
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To find the optimal solution we must examine the performance index in the set of all possibilities of 
control-state pairs. This set is called the set of admissible pairs consisting of pairs like  satisfying in (2) 
and other mentioned conditions. If we choose a control function u and solve (2) with initial conditions, then 
resulting state may not reach to  at and a miss distance between  and  is introduced. Now 

if the norm of miss distance is added to the performance index as a penalty, then minimizing 
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0x0x ftt  )( ftx

0)( xtxMI f   forces the control to produce an admissible state. This enables us to reduce the 

admissible set of control-states to the admissible set of controls only. So we could search for the optimal 
solution in the set of all controls. This process of constructing optimal solutions from control function is a 
popular method in optimal control theory which appears in literature under control parametrization [9, 15] 
and control discretization [10]. 

Here we develop a control discretization based method where the time interval is divided to n  sub-
interval . On the other hand the set of control values is divided to constant values  

. In this way the time-control space is discretized if the control function assumes to be constant 

at each time sub-interval. A typical dicsretization is given in Fig.1 with 
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7n  and . The bold pattern 
in this picture shows a control function.  
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3. Converting OCP to AS 

Discretization proposes to consider control function as a sequence of  segments corresponding to time ju
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sub-intervals. Now a trivial way to find the nearly optimal solution is to calculate all possible patterns and 

compare the corresponding trade offs. This trivial method of total enumeration needs  evaluation. 
Avoiding of such a huge number of computations, we introduce a method of evaluating special patterns 
guiding us to the optimal one. The main drawback of the total enumeration is that the method evaluates all of 
the control patterns independently i.e. the evaluated performance index of the current pattern doesn't have a 
role in construction the next pattern. With AS approach we construct patterns based on the performance 
index of pervious iterations leading to a method with computations less than the total enumeration. 

nm

For converting the OCP to AS we use a similar framework of solving QAP by ACO. In fact we decide to 
assign for every interval , a constant 1[ , ], 1, 2, , ,i it t i n    mk uuuu ,,, 10  . 

Special form of our problem suggests us to use another version of ACO, called Max-Min Ant System 
(MMAS). This method, the first used to solve TSP ([11, 12]) and then used for solving QAP in [12]. In fact 
this method is one of the best performing extensions of AS. It extends the basic AS in the following aspects 
which is quoted from [3]: 

1. After each tour, updating of trial will be done by an ant, i.e. that ant which obtains the best solution in 
currently tour or the best solution from the first tour until current tour. After all ants have constructed a 
solution, first every pheromone trial is evaporated: 

,)1( rsrs    

and next pheromone is deposited according to: 

,)),(( bestrsbestrsrs SaSCf   

where  is the amount of pheromone released depends on the quality ,  is a cost 

associated to each solution ,  is the best solution and 
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S bestS ]1,0(  is evaporation rate. The best ant that 

is allowed to add pheromone may be the iteration-best or the global best solution. Experimental results have 
shown that the best performance is obtained by gradually increasing the frequency of choosing the global-
best solution for the pheromone trial update. In addition in MMAS typically the ants solutions are improved 
using local optimizers before the pheromone update. 

2. Also in MMAS, the value of pheromone is restricted in a closed interval ],[ maxmin  . The chance of 

algorithm stagnation is thus decrease by giving each connection some, although very small, probability of 
being chosen. In practice, heuristics exist for setting min and max . First it can be shown that, because of the 

pheromone evaporation, the maximal possible pheromone trial level is limited to 
)*S(.
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is the optimal solution. 
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Based on this result, the global best solution can be used to estimate max by replacing  with *S

global bestS  t in the equation for .  For *
max min it is often enough to choose it as some constant factor lower 

than max . As a means for further increasing the exploration of solution, MMAS also uses the occasional re-

initialization of pheromone trails.  

3. Instead of initializing the pheromones to a small amount, in MMAS the pheromone trails are 
initialized to an estimate of the maximum allowed pheromone trail value. This leads to an additional 
diversification component in the algorithm, because at the beginning the relative difference of the pheromone 
trails will not be very marked, which is different when initializing the pheromone trails to some very small 
value. 

The procedure of MMAS can be found in [11] with more details. Two special properties of this method 
are as follows: 

i) items are chosen randomly, 

ii) pheromone trails refers to the desirability of assigning item i to location j  in iteration  is as: s
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For using a method which is based on MMAS, we need to define a criteria for measuring the objective 
and updating the trials of pheromone. For this purpose, we suppose that after the iteration s  we obtain the 

control  as: su
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where  is the selection of  the su  th value of control in interval . As it is mentioned in Section 2 

we consider an approximation of trajectory corresponding to  from (2) and initial value, and we 

call it . We also denote the estimation of the criteria for updating tour (pattern) in th iteration by 

 and define it as follows: 
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where M  is a large and positive real number which we consider it as a penalty value for obtaining desired 

final value  . In fact  is the same  which is defined in the above. To be taken note that the 
definition of criteria estimation can be done in different manners. On basis of the discussion in this section, 
we present the following procedure for obtaining an approximate solution of the optimal control problem in 
format of MMAS as following pseudo-code: 

fx
sJ )(SC

0.(Initialize) Control-state parametrization, method parameter settings 

1. For  to the maximum number of iterations, do 1s :s

2. For 1 to  the number of ants, do 1k :m

3. Repeat until ant k  has completed a tour 

4. Determine the best probability  
k
ijp

5. Calculate the objective of the tour generated by ant k  sJ

6.Call the best objective between all tours of ants as  and update general pheromone.  
*J

Numerical Examples 

In this section we present some numerical examples to show the implementation and accuracy 
confirmation of the proposed method. 

Example 1. In the first example we consider an OCP of minimizing 

 

 

Fig.2. The resulting piece-wise control of Example 1. 
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Fig.3. The resulting state of Example 1. 
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with ,  as initial and final conditions. Here the control function values are in . 

For control-state division we choose and 

0)0( x 5.0)1( x ]7.0,3.0[
10n 10m . By applying the procedure of Section 4 with 100 

ants we obtain in 50 iterations. The approximate optimal control in piece-wise linear form is 
shown in Fig.2. If we substitute this function in the system equations, then an initial valued problem is left to 
solve by a numerical method. 

2293.0* I

We solve this initial value problem by using Rung-Kutta method of forth order ([2]) to find the 
corresponding state function as depicted in Fig.3. The value of trajectory corresponding to the final time  

is  which shows the accuracy of the method in final condition. 
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Example 2. In the second example we consider a nonlinear OCP involving minimization of 
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where the pair of control-state satisfy in the following non-linear dynamical system: 
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Fig.4. The resulting states of Example 2. 

It is desired that the system state moves from at )0,0( 0t to  at . The control value 

interval is given by which is divided to 

)3.0,1.0( 1t
]5.0,0[ 10m  portion. The time interval is also divided to 
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10n
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sub-intervals. By using 200 ants in this example, the method converges to the solution in only 80 
iterations. The _nal value of approximate optimal trajectories are obtained with low miss distances as 

and . The resulting approximate trajectories which have been found by 
solving the di_erential equation with the resulting control function and initial conditions are depicted in Fig.4.  

1009.0 2969.0)1(*
2 x

4. Conclusions 
In this paper we tried to apply the benefits of one of the best evolutionary algorithm, ant colony 

optimization, to obtain approximate solution of optimal control problems. To this means, we proposed an 
special discretization of control state and then change the procedure of MMAS to obtain the best solution. 
Numerical results show the accuracy of the method in final conditions. Of course it seems that the number of 
iterations, ants and the form of discretizing effect on the complexity of method, but the nonlinearity of the 
objective and system have no serious effect on the procedure. In the case of large discrete optimal control 
problem, the method may be implemented on parallel computers to save the computational time.  
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