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Abstract. In this paper we consider a numerical approach for the determination of an unknown boundary 
condition in the inverse heat conduction problem (IHCP). The given heat conduction equation, the boundary 
condition, and the initial condition are presented in a dimensionless form. The numerical algorithm based on 
finite-difference method and the least-squares scheme for solving the inverse problem. To regularize the 
resultant ill-conditioned linear system of equations, we apply the Tikhonov regularization method with L-
curve scheme to obtain the stable numerical approximation to the solution. 
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1. Introduction  

To date, various methods have been developed for the analysis of the inverse problems and inverse heat 
conduction problems involving the estimation of temperature and heat flux by measuring temperature inside 
the material [3-8]. 

This paper seeks to determine an unknown function in the IHCP. By using a sensor located at a point 
inside the body and measuring the temperature at a point 1 1, 0 1x x x   , and applying finite difference 

method to the IHCP, we determine a stable numerical solution to the problem. 

The plan of this paper is as follows: In section 2, we formulate a one-dimensional IHCP. In section 3, 
The finite difference method is used to discretize IHCP. The least-squares method and the Tikhonov 
regularization method with L-curve scheme will be discussed in section 4. Finally a numerical experiment 
will be given in section 5.  

2. Formulation of an IHCP 
In this section, let us consider the following IHCP 

   , , , 0 1, 0t xxU x t U x t x t T   ,                                             (1) 

   ,0 , 0 1,U x f x x                                                   (2) 

   0, , 0 ,U t p t t T                                                            (3) 

   1, , 0 ,U t q t t T                                                          (4) 

and the over-specified condition 

   1 1, , 0 1, 0U x t t x t T    .                                              (5) 

where T is a given positive constant,  p t  and  t  are infinitely differentiable, while the temperature 

 is unknown which remain to be determined.      1,U t q t
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For unknown function  we use an additional information (5) to provide a solution to the inverse 

problem (1)-(5). 

 q t

3. Overview of the numerical method 

In order to solve the problem (1)-(5) numerically, let  q t  is known then we use O'Brien et al. [7] 

implicit finite difference formula for the equation (1) which is in the form 

 1, 1 , 1 1, 1 ,1 2 , 1, 2,..., 1, 1,..., ,i j i j i j i jru r u ru u i N j M                                 (6) 

where 
 2, , ,

t
x i x t j t r N x

x


      


1, . and M t T  1,2,..., 1,  The equation (6) for i N  

can be written as 

,AX D                                                                       (7) 

where 

 
 
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0 0 0 0 0 1 2 0

0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 1 2
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r r r

r r r

r r

  
    
   
 

  
   
 

   
   

        

0

 

 1, 1 2, 1 2, 1 1, 1 ,T
j j N j N jX u u u u        

      1, 2, 2, 1,1 1T
j j N j N jD u rp j t u u u rq j t        .



 

If there are   internal mesh point along each time then for i1N    1 , equation (6) given 

 unknown pivotal values along the 

,..., 1N 

 1N    1j  th row in terms of known initial and boundary values. 

Theorem 1. If U is the exact solution of problem (1)-(4) and u is the exact solution of finite-difference 
equation (6), then the discretization error , ,i j i j i je U u ,  tends to zero as . N 

Proof. Putting  then by substituting ,e U u  , ,i j i j i ju U e ,   into (6) and Taylor's theorem we 

obtain, 

 1, 1 , 1 1, 11 2i j i j i jre r e re         

   
2

3 4 12
, ,i j i j i j

U U
k x t k x h t

t x
  

                 
, ,e

3 1

                               (8) 

 

where  1 20 1, 0 1, 0         and 41 1.    Now let denote the maximum value of jE ,i je  

along the jth time-row and M̂ is the maximum modulus of the expression in the bracts for all and . Then, 
from (8) we conclude that 

i j

  , 1 1, 1 1, 1 ,
ˆ1 2 .i j i j i j i jr e r e r e e kM          

As this is true for all values of i it is true for max , .i je  Hence  
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� �
1 0 ,jE E jkM jkM     

Because the initial values for u and U are the same, i.e. , 0 0.E   when  tends to zero, then h jE  is 

zero.         �  

Therefore the difference scheme (6) for 1,2,..., 1,i N   is consistent. 

Theorem 2. The finite difference scheme (6); 1, 2,..., 1,i N   unconditionally stable. 

Proof. From equation (6) for  we obtain 1,2,..., 1,i N 
1 .X A D                                           (9) 

Therefore difference scheme (6) for 1,2,..., 1,i N   will be stable when the modulus of every 

eigenvalue of  does not exceed one. The eigenvalues of 1A 1A  is, 
1

21 4 sin , 1, 2,..., 1.
2

s
r s

N




         
N  

Hence the modulus of every eigenvalue of  1A   does not exceed one.     �  

The LU-Decomposition algorithm is used to solving equation (7), and the solution 

 1, 1 2, 1 1, 1 ,T
j j N jX u u u      

will be obtained. In this work the polynomial form proposed for the unknown  before performing the 

inverse calculation. Therefore  approximated as 

 q t

 q t

  2
0 1 2 ... ,q t a a t a t a t                                                      (10) 

where   0 1, ,...,a a a  are constants which remain to be determined simultaneously for each interval. 

4. Least-squares minimization technique and the Tikhonov regularization 
method with L-curve scheme 

The estimated coefficients  can be determined by using least squares method when the sum of the 

squares of the deviation between the calculated 

ia

, 1v ju   and the measured   1j k   at 1x x v x    is 

less than a small number such as  The error in the estimates 0.001.  0 1, ,...,a aE a    can be expressed as  

    
1 2

0 1 , 1
0

, ,..., 1 ,
M

v j
j

E a a a u j k 





                                       (11) 

which is to be minimized. 

To obtain the minimum value of E  with respect to , differentiation of ia E with respect to will be 

performed. Thus to minimize  
ia

E  one has to solve the following system 

 

0

0

0.

E

a

E

a





 


                                                                     (12) 

In matrix form, the values of  can be obtained from solving the following matrix equation  ,ia

,B                                                                       (13) 
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1 where   is a  square matrix, and   1   

 0 1 .T a a a    

Mathematically, IHCPs belong to the class of ill-posed problems, i.e. small error in measured data can 
lead to large deviations in the estimated quantities. The physical reason for the ill-posedness of the 
estimation problem is that variations in the surface conditions of the solid body are damped towards the 
interior because of the diffusive nature of heat conduction. As a consequence, large-amplitude changes at the 
surface have to be inferred from small-amplitude changes in the measurements data. Errors and noise in the 
data can therefore be mistaken as significant variations of the surface state by the estimation procedure. 
Since the matrix   is ill-conditioned, the solution of equation (13) can be corrupted by an amplified 
propagation of the data noise, so that regularization methods must be used for controlling this noise 
propagation. In our computation we adapt the Tikhonov regularization method [1] to solve the matrix 
equation (13). The Tikhonov regularized solution   is defined to be the solution to the following least 

square problem 

 2 2min ,B


     2
                                                    (14) 

where .   denotes the usual Euclidean norm and   is called the regularization parameter. 

Note. The Tikhonov regularized solution to the system of linear algebraic equation B  is given by 

   : minf f   
,    

Where f   represents the zeroth order Tikhonov functional given by 

  2 22 .f B         

Solving  with respect to   0f     , then we obtain, the Tikhonov regularized solution of the 

regularized equation  

 2 .T TI B       

Definition. Let   be a matrix and let then the singular value decomposition (SVD) of     

is defined by  

m nA R  ,m n
A

,TS
A U V

 
   

 

where  and  1 ... ,m m
mU u u R    1 ... n n

nV v v R  

A

, are orthogonal matrix with orthogonal 

columns, and  are the left and right singular vectors of respectively, and is a diagonal 

matrix that diagonal elements appearing in non-increasing order of nonnegative singular values 

,i iu v

0.n

n nS R 

1 2    m    In case  then define the SVD from n .TA  

Now for ,B   

1

1

,T
i i i

i

u v







   

 
1

1

,T
i i

i

v v


 




  

and 
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 
1

1

.T
i i

i

B u B u
 



   

Therefore the Tikhonov solution can be formulated as  

 
21

12
2 2

1

.
T

T T i i
i

i i i

u B
I B v




 

  





     
  

In our computation we use the L-curve scheme to determine a suitable value of  [2]. The L-curve 
method is sketched in the following form, 

      2 2
log , log , 0L     B                                           (15) 

The curve is known as L-curve and a suitable regularization parameter   corresponds to a regularized 
solution near the, corner, of the L-curve [9]. 

5.  Numerical results and discussion 
In this section, we are going to illustrate numerically, some of the results for unknown boundary 

condition in the inverse problem (1)-(5). All the computation are performed on the PC (Pentium(R) 4 CPU 
3.20 GHz). 

Example 1. In this example let us consider the following inverse problem  

   , , , 0 1, 0t xxU x t U x t x t T   ,                                          (16) 

 ,0 cos , 0 1,U x x x                                             (17) 

   0, exp , 0 ,U t t t T                                                    (18) 

   1, , 0 ,U t q t t T                                                   (19) 

with the overspecified conditions 

     0.5, exp cos 0.5 , 0 .U t t t T                                            (20) 

The exact solution of this problem is 

     , exp cosU x t t x  ,  

and 

 

     exp cos 1 .q t t   

In this example  approximated by  q t

  2 3 4
0 1 2 3 4 5 ,q t a a t a t a t a t a t      5                                             (21) 

where  0 5,...,a a  are constants, 6 6A R   and the singular values of A  are 

1 6.4871, 02 3 4 5 60.0006.6919, 0.0300, , 0.0000, 0.0000.           

Table 1, shows the values of  and q j t   0.7,U j t  in t j t   when 
1

10
t   and  1,...,10.j 
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Table 1. The values of  q j t  and  0.7,U j t  in t j t  . 

 Numerical         Exact Numerical             Exact 

j           q j t   q j t       0.7,U j t     0.7,U j t  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.4768            0.4889 

0.4329            0.4424 

0.3923            0.4003 

0.3549            0.3622 

0.3210            0.3277 

0.2903            0.2965 

0.2627            0.2683 

0.2379            0.2428 

0.2153            0.2197 

0.1946            0.1988 

  0.6894               0.6921 

  0.6233               0.6262 

  0.5641               0.5666 

  0.5105               0.5127 

  0.4619               0.4639 

  0.4179               0.4198 

  0.3781               0.3798 

  0.3421               0.3437 

  0.3096               0.3110  

  0.2801               0.2814 
 

Figure 1 and 2 show the comparison between the exact result and the present numerical results for 

 and  respectively where q j t  t0.7,U j 1,...,10.j   
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Figure 1. Comparison between the exact results and the present numerical results. 
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Figure 2. Comparison between the exact results and the present numerical results. 
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Example 2. In this example let us consider the following inverse problem 

   , , , 0 1, 0t xxU x t U x t x t T   ,                                              (22) 

  2,0 sin , 0 1,U x x x x                                               (23) 

 0, 2 , 0 ,U t t t T                                                             (24) 

   1, , 0 ,U t q t t T                                                          (25) 

with the overspecified conditions 

     0.4, 0.16 2 exp sin 0.4 , 0 .U t t t t T                                    (26) 

The exact solution of this problem is 

     2, 2 exp sinU x t x t t x    ,  

     1 2 exp sin 1 .q t t t     

In this example  approximated by  q t

  2 3 4
0 1 2 3 4 5 ,q t a a t a t a t a t a t      5                                               (27) 

where  0 5,...,a a  are constants, 6 6A R   and the singular values of A  are 

1 23.9834, 0 3 5.4045, 0.0169, , 0.0000,4 0.0003       and 6 0.0000.   

Table 2, shows the values of  and q j t   0.7,U j t  in t j t   when 
1

10
t   and  1,...,10.j 

Table 2. The values of  q j t  and  0.7,U j t  in t j t  . 

 Numerical         Exact Numerical             Exact 

j           q j t   q j t     0.7,U j t     0.7,U j t  

1 

2 

3 

4 

5 

6 

8 

9 

10 

1.9533              1.9614 

2.0831              2.0899 

2.2186              2.2234 

2.3597              2.3641 

2.5063              2.5104 

2.6580              2.6618 

2.9751              2.9781 

3.1395              3.1421 

3.3069              3.3096 

  1.2712               1.2729 

  1.4157               1.4174 

  1.5658               1.5672 

  1.7206               1.7218 

  1.8796               1.8807 

  2.0425               2.2099 

  2.3786               2.3795 

  2.5512               2.5519 

  2.7262               2.7270  
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t
Figure 3 and 4 show the comparison between the exact result and the present numerical results for 

 and  respectively where 
 q j t  0.7,U j 1,...,10.j   
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Figure 3. Comparison between the exact results and the present numerical results. 
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Figure 4. Comparison between the exact results and the present numerical results. 
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