
 ISSN 1746-7659, England, UK

Journal of Information and Computing Science
Vol. 4, No. 3, 2009, pp. 311-320

Using Shift Number Coding with Wavelet Transform for
Image Compression

Mohammed Mustafa Siddeq +

Software Engineering Depart, Technical College –Kirkuk – Iraq

(Received March 10, 2009, accepted September 24, 2009)

Abstract: This paper introduces an idea for image compression; consist from two parts; the first part used
single stage Discrete Wavelet Transform (DWT), which produces four sub matrices; LL, HL, LH, and HH.
The two sub matrices HL and LH are merged to be one matrix "Merged - Matrix", and store non-zero data in
array "Non-Zero-Array", then compress it by RLE and Arithmetic coding. In the second part the sub-matrix
LL coefficients converted into data at range {0…80}, LL sub matrix used by Shift Number Coding (SNC),
this algorithm converts each four data into single floating point number, which stored in one dimensional
array "SNC-Array", finally apply arithmetic coding on it. Our approach compared with JPEG, and JPEG-
2000, by using compression ratio and PSNR.

Keywords: Discrete Wavelet Transform, Shift Number Coding, Run-Length-Encoding.

1. Introduction
The JPEG and the related MPEG format make good real-world examples of compression because (a)

they are used very widely in practice, and (b) they use many of the compression techniques we have been
talking about, including Huffman codes, arithmetic codes, residual coding, run-length-coding, scalar
quantization, and transform coding [1-3]. JPEG is used for still images and is the standard used on the web
for photographic images. JPEG is designed so that the loss factor can be tuned by the user to tradeoff image
size and image quality, and is designed so that the loss has the least effect on human perception [4-7,11]. It
however does have some anomalies when the compression ratio gets high, such as odd effects across the
boundaries of 8x8 blocks. For high compression ratios, other techniques such as wavelet compression appear
to give more satisfactory results. The wavelet transform has emerged as a cutting edge technology, within the
field of image compression [5-9]. Wavelet-based coding provides substantial improvements in picture
quality at higher compression ratios. Over the past few years, a variety of powerful and sophisticated
wavelet-based schemes for image compression, as discussed later, have been developed and implemented.
Because of the many advantages, the top contenders in the upcoming JPEG-2000 standard are all wavelet-
based compression algorithms [13].

This paper describes image compression consists form two parts: (1) using Discrete Wavelet Transform
(DWT), and (2) using Shift Number Coding (SNC). The DWT decomposes an image into four-sub images;
"LL", "HL, "LH", and "HH", and the second part in this paper using SNC applied on sub-image "LL", which
convert each four data into single floating point number. Also in this paper we describe comparison with
JPEG, and JPEG-2000.

2. 2. Compression Algorithm
In this research we introduce an idea for image compression, depending on SNC and DWT. The DWT

decomposes an image into four-sub images; consist from low-frequency, and high-frequencies "LL", "HL,
"LH", and "HH". The SNC used to encode the "LL" matrix into floating point number, by taking each four
data from "LL" matrix to be converted into single floating point number. The matrices "HL" and "LH" are
merged into a single matrix, and scan (Row-by-Row) for non-zero data, finally these data are coded by Run
Length Encoding (RLE), and Arithmetic Coding. Fig -1 illustrated our algorithm.

+ Author Tel.: +9647701256324
Email: - mamadmmx76@yahoo.com

Published by World Academic Press, World Academic Union

Mohammed Mustafa Siddeq: Using Shift Number Coding with Wavelet Transform for Image Compression 312

Fig -1 Compression Algorithm

2.1. Shift Number Coding (SNC)
Before applying SNC on matrix "LL", we reduce data of the matrix "LL" into range between {0...79} by

using the following equation [1,2]:

 Data (new) =
MAX

ThresholdData old)*()(
 (1)

The reduction of data depend on Threshold=80, and MAX (i.e. maximum data in sub matrix "LL"). The
new range of matrix "LL" becomes between {0 – 79}, the main reason for choosing this small range, to get
maximum compression ratio.

SNC algorithm begin by assigning a value for all new data (i.e. new data for matrix "LL") where the
interval of these values between {0 - 1}. Each data divided by 256, which means the interval between any
two sequential values, is 0.0039. The SNC algorithm compresses each four data into single floating point by
shifting each value, and total values called "Compressed Value". SNC do not need to compute the probability
for an image and does not need to store information about compressed image. The output for SNC is a one
dimensional array contains floating point numbers called "SNC-Array". The following equation is used by
our algorithm:


n

i

iValueiShiftValuenCompressio)(*)(For i =1,2…4 (2)

The value of "Compression Value" it's single floating value, and the "Shift(i)" it's used to shift the value
according to index of data. The shift function can be illustrates in the Table 1.

Table 1 Shift function

Index Shift(index)
1 1
2 0.01
3 0.0001
4 0.000001

The Compression algorithm for each 4-data is shown below:

Set Compression_Value to 0.0;
Set index to 1;

Original
Image

 LL

 HL

 LH

Apply SNC 0.1345689
0.4567845
0.7890101
………..etc.

SNC-Array

 Non-Zero-Data

10101000011
11000011100
1111.….etc.

Arithmetic
Coding

RLE and
Arithmetic

Coding

Arithmetic
Coding

Wavelet Transform

LL HL

LH HH

Scan Row-by-Row
for non-zero data

 Bit matrix

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 4 (2009) No. 4, pp 311-320 313

While (index 4) Do 
 Read (symbol)
 Value = interval (Symbol);
 Compression_Value = Compression_Value + Shift (index) * Value;
 Index = index + 1;
End While

2.2. Discrete Wavelet Transform (DWT)
In this section decompose an image into four sub-images; "LL", "HL", "LH", and "HH", which

represents coefficient matrix, horizontal matrix, vertical matrix, and diagonal matrix respectively, these
matrices generated from single-stage DWT [2,3,5]. The matrix "LL" encoded by SNC (explained at previous
section), and the other matrices "HL", and "LH" are merged into one matrix is called "Merged Matrix".

The "HH" matrix ignored in this paper, for obtaining maximum compression ratio, the Merged Matrix
scan (row-by-row), and for mapping it into one dimensional array is called "Non-Zero-Array".

Also, Transform the Merged Matrix, to "Bit Matrix", this matrix contains, bits {0, 1}, the transformation
done by changing every non-zero data to "1", the idea of this transformation, save position for each non-zero
data.

2.3. Coding Algorithm
In this paper we use two important coding algorithms Run-Length-Encoding (RLE), and Arithmetic

Coding. These algorithms are useful in image compression, especially in JPEG-2000 technique [1]. The
basic concept of RLE is to code each contiguous group of 0's or 1's from left to right by scan a row (i.e.
computes number of 1's or 0's in a row) [11,12].

In our algorithm RLE applied on Bit Matrix to produce a one-dimensional array contains total of 0's and
1's in a row from left to right. The RLE stores start bit 0 or 1, for example: assume the stream of bits
{10000111001111}, the RLE result: {1, 1, 4, 3, 2, 4}, the first number is start bit, and second number is refer
to total of 1's, and third number refer to total of 0's, and so on, This process will continues until reached to
the end of "Bit Matrix". Finally the arithmetic coding applied on Non-Zero-array, and SNC-Array to produce
stream of bits (See Fig -1).

The Arithmetic coding takes a stream of input data and replaces it with a single floating point output
number. The output from an arithmetic coding process is a single number less than 1 and greater than or
equal to 0. This single number can be uniquely decoded to create the exact stream of data [1,2,12]. For test
our algorithm, assume the matrix size 8x8 as shown below:





































16916316622618179160196

16117421019896125181207

16121819615390159188210

196218195121120171201200

202218168106138190205211

210190128133166201200217

211153112135196216222223

171124121193218206214204

X

1- Using DWT to generate four sub images by MATHLAB:

[LL, HL, LH, HH] =DWT2(X, 'Haar');





















334 400, 241, 372,

397 333, 270, 400,

410 268, 348, 417,

330 281, 418, , 432

LL





















2 8, 19,- 16,

10- 7,- 20, 1,

35- 34, 6, 14,-

18 17,- 21, 2,
HL





















3 24, 37,- 31,

40 59,- 60, 10,

2- 29,- 44, 12,

53 48, 4, 4,-

LH

The sub-matrix "HH" not used in our algorithm, this led to reduce in computation time, and this led to

reducing at image quality.

JIC email for subscription: publishing@WAU.org.uk

Mohammed Mustafa Siddeq: Using Shift Number Coding with Wavelet Transform for Image Compression 314

1- Apply Equation (1) on "LL", and divided each data at sub-matrices "HL", and "LH" by the Quality

Factor =20, this value specify image quality:





















61 73, 44,,68

73 61, 49, 73,

75 49, 64, 76,

60 51, 76, 79,

LL





















0 0, 1,- 1,

1 1,- 1, 0,

1- 0, 1, 0,

2- 2, 0, ,1

HL





















0 1, 2,- 2,

2 3,- 3, 1,

0 1,- 2, 1,

3- 2, 0, 0,

LH

2- Apply Equation (2) on "LL" to generate "SNC-Array", as shown in Table 2.

Table 2 SNC algorithm

Data Value Shift(index) Compression_Value
79 79 / 256 1 0.30859375
76 76 / 256 0.01 0.3115625
51 51 / 256 0.0001 0.3115824
60 60 / 256 0.000001 0.31158265

Data Value Shift(index) Compression_Value
76 76 / 256 1 0.296875
64 64/256 0.01 0.299375
49 49 / 256 0.0001 0.2993941
75 75 / 256 0.000001 0.29939443

Data Value Shift(index) Compression_Value
73 73 / 256 1 0.28515625
49 49 / 256 0.01 0.2870703
61 61 / 256 0.0001 0.2870941
73 73/256 0.000001 0.28709442

Data Value Shift(index) Compression_Value
68 68 / 256 1 0.265625
44 44 / 256 0.01 0.2673437
73 73 / 256 0.0001 0.2673722
61 61 / 256 0.000001 0.26737250

The final array; SNC-Array = [0.31158265, 0.29939443, 0.28709442, 0.2673725]

3- Compress SNC-Array, first separate floating point into 2-digits, then apply arithmetic coding:

SNC-Array=[31, 15, 82, 65, 29, 93, 94, 43, 28, 70, 94, 42, 26, 73, 72, 5]
The Arithmetic Coding convert the SNC-Array to stream of bits, and its size = 66-Bits.

4- The HL, and LH merged into one matrix (Merged Matrix), to generate Non-Zero-Array from it, also

transform it to Bit Matrix, as shown below:





















0 1, 2,- 2, 0, 0, 1,- 1,

2 3,- 3, 1, 1, 1,- 1, 0,

0 1,- 2, 1, 1,- 0, 1, 0,

3- 2, 0, 0, 2,- 2, 0, ,1

MatrixMerged





















0 1, 1, 1, 0, 0, 1, 1,

1 1, 1, 1, 1, 1, 1, 0,

0 1, 1, 1, 1, 0, 1, 0,

1 1, 0, 0, 1, 1, 0, ,1

MatrixBit

 RLE =[1,1,1,2,2,2,1,1,1,4,2,9,2,3,1]

 Non-Zero-Array =   1 2,- 2, 1,- 1, 2, 3,- 3, 1, 1, 1,- 1, 1,- 2, 1, 1,- 1, 3,- 2, 2,- 2, 1,

The Arithmetic coding applied on Non-Zero-Array, to produce stream of bits: 57 Bits, and also

arithmetic coding applied on RLE to get: 33-Bits, the total size for compressed image by our algorithm (66

Transformation

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 4 (2009) No. 4, pp 311-320 315

Bits +57 Bits +33 Bits) 156 Bits. We compute the compression performance for above example by the
equation [1]:-

ncompressiobeforeSize

ncompressioafterSize
RatenCompressio  (3)

  %1100 RatenCompressioePerformancnCompressio  (4)

The compression performance is 69.5% for the above example; this means the algorithm save 69.5%

from the data. The decompression algorithm starts decoding bits to generate RLE, Non-Zero-Array, and
SNC-Array. From the RLE generate Bit Matrix by taking first number, which is represents start bit "1", the
following steps illustrates return Bit Matrix, and Merged Matrix:

RLE =[1, 1,1,2, 2, 2, 1,1,1,4, 2, 9, 2, 3, 1]

 [1, 0, 1, 1, 0,0, 1,1,0,1, 0,1,1,1,1, 0,0, 1,1,1,1,1,1,1,1,1 0,0, 1,1,1, 0]





















0 1, 1, 1, 0, 0, 1, 1,

1 1, 1, 1, 1, 1, 1, 0,

0 1, 1, 1, 1, 0, 1, 0,

1 1, 0, 0, 1, 1, 0, ,1

MatrixBit

 Non-Zero-Array =   1 2,- 2, 1,- 1, 2, 3,- 3, 1, 1, 1,- 1, 1,- 2, 1, 1,- 1, 3,- 2, 2,- 2, 1,





















0 1, 2,- 2, 0, 0, 1,- 1,

2 3,- 3, 1, 1, 1,- 1, 0,

0 1,- 2, 1, 1,- 0, 1, 0,

3- 2, 0, 0, 2,- 2, 0, ,1

MatrixMerged

The Bit Matrix transformed to Merged Matrix, by taking each "1-Bit" replaced with data at Non-Zero-

Array, in order. Then separate Merged Matrix to get "HL" and "LH", and applying Inverse SNC on SNC-
Array to return "LL". Table-3 shows Inverse SNC, and the following steps illustrated Inverse SNC:

For J=1 to Size (SNC-Array)
 Compression_Value=SNC-Array(J)
Number_Of_Data = 4;
While (Number_Of_Data > 0) Do
 For I =1 to Threshold Do
 IF Data(I) /256  Compression_Value< Data(I+1) /256 THEN
 Let K= Data(I);
 Store_Data_in_MatrixLL (Data, I);
 End //IF
 End //For
 Compression_Value=Compression_Value -K;

JIC email for subscription: publishing@WAU.org.uk

Mohammed Mustafa Siddeq: Using Shift Number Coding with Wavelet Transform for Image Compression 316

 Compression_Value=Compression_Value*100;
Number_Of_Data=Number_Of_Data - 1;
End //While
End // For

Table 3 Inverse SNC, for return LL matrix

Data Range Value Selected
Data

Data
 Range

Value Selected
Data

[79 /256 – 80 /256] 0.31158265 79 [76 /256 – 77 /256] 0.29939443 76
[76 /256 – 77 /256] 0.29889 76 [64 /256 - 65 /256] 0.251943 64
[51 /256 – 52 /256] 0.2015 51 [49 /256 – 50 /256] 0.1943 49
[58 /256 – 59 /256] 0.228125 58 [74 /256 – 75 /256] 0.289375 74

Data Range Value Selected
Data

Data
Range

Value Selected
Data

[73 /256 – 74 /256] 0.28709442 73 [68 /256 – 69 /256] 0.26737250 68
[49 /256 – 50 /256] 0.193817 49 [44 /256 – 45 /256] 0.17475 44
[61 /256 – 62 /256] 0.241075 61 [73 /256 -74 /256] 0.2875 73
[71 /256 – 72 /256] 0.279375 71 [61 /256 – 62 /256] 0.234375 61

After constructing the "LL", using inverse equation (1) for obtaining approximately original coefficients

and multiply each data in "HL", and "LH" by Quality Factor, finally applying inverse DWT to obtain

"matrix X


" which is equivalent to "matrix X" , as shown below:





















61 73, 44,,68

71 61, 49, 73,

74 49, 64, 76,

58 51, 76, 79,

LL





















0 0, 1,- 1,

1 1,- 1, 0,

1- 0, 1, 0,

2- 2, 0, ,1

HL





















0 1, 2,- 2,

2 3,- 3, 1,

0 1,- 2, 1,

3- 2, 0, 0,

LH





















329 394, 238, 367,

383 329, 265, 394,

400 265, 346, 410,

313 275, 410, , 427

LL





















0 0, 20,- 20,

20 20,- 20, 0,

20- 0, 20, 0,

40- 40, 0, ,02

HL





















0 20, 40,- 40,

40 60,- 60, 20,

0 20,- 40, 20,

60- 20, 0, 0,

LH

X


 =round (IDWT2 (LL, HL, LH, [0], 'Haar'))



































165165187207149109154194

16516518720712989174214

16220220514593153187207

182222185125113173187207

210210143123143183195215

190190143123163203195215

207147108128205205204204

167107148168205205224224

X


3. Computer Results
Our algorithm applied on (MATLAB Language), by using "Pentium4 - 1.73MHz, 1MB Cache Memory",

with Windows XP professional. The "Lena" image two-dimensional array (256 x 256) tested by our
algorithm, at first the gray level for "Lena" image reduced by equation (1) Threshold=90. Then apply one
stage DWT, and apply SNC on "LL", and the two matrices "HL", and "LH" divided by Quality Factor =20,
then applying coding algorithm to produce stream of bits, the original image and decompressed image shown

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 4 (2009) No. 4, pp 311-320 317

in Fig.-2.

Peak signal to noise ratio (PSNR) can be calculated very easily and is therefore a very popular quality
measure; it is widely used as a method of comparing the "Quality" of original and decompressed images
[2,5,8].

(a) Original Image (b) Quality Factor = 20,
 PSNR = 31.5 dB

Fig – 2 (a) Original "Lena" image, (b) Decompressed image by our algorithm

Our approach compared with JPEG, and JPEG-2000, the JPEG based on DCT and Huffman coding,

while JPEG-2000 based on two stages DWT, and Arithmetic Coding [7,11], in Fig.-3 shown results of JPEG,
and JPEG2000 and Table 4 shown the comparison with our approach.

(a) (b)

Fig – 3 (a) Decompressed image by JPEG-2000, (b) Decompressed image by JPEG

In Fig -4 Lena's eyes zoom-in three times, to show the detail for our approach compared with JPEG, and
JPEG-2000.

JIC email for subscription: publishing@WAU.org.uk

Mohammed Mustafa Siddeq: Using Shift Number Coding with Wavelet Transform for Image Compression 318

(a) (b)

 (c) (d)

Fig – 4 (a) From Original image, (b) From our approach, (c) From JPEG, (d) From JPEG-2000

Table 4 Comparison with our approach.

Algorithm
Image size

Before
Compression

Image size
After

Compression

Compression
Performance

PSNR

Our Approach 64 Kbytes 11.1 Kbytes 82.6% 31.5 dB
JPEG 64-Bytes 12.8 Kbytes 80% 33.5 dB

JPEG-2000 64 Kbytes 7 Kbytes 89% 33 dB

4. Conclusion
In this paper introduce an idea for image compression, depend on two parts: (1) SNC, and (2) Discrete

Wavelet Transform. The advantage of our approach illustrated in the following steps:-

1- The SNC used for reduce the coefficient of sub-matrix "LL". This operation assist for simplifies the

compression process.
2- The DWT separate an image into four sub-images, the two sub-images: "HL", and "LH" has zero's.

These zeros could be eliminated, for increasing compression ratio.
3- The "HH" sub-matrix not used in our approach, this leads for increasing compression ratio.
4- The Arithmetic coding play main rule for image compression, it is more efficient than Huffman

coding used in JPEG (See Table 4).
5- The RLE used in our algorithm operate on "Bit Matrix", to minimize number of 1's and 0's. While in

JPEG technique, the RLE applied on real numbers, this makes our approach give good compression
ratio than JPEG.

The disadvantage for our approach illustrated in the following steps:

1- For not using HH matrix, make our approach give results less quality, than JPEG, and JPEG-2000

(See Fig - 4(b)), and Table 4.
2- The Inverse SNC not return the data as original, this makes our approach give less quality than

JPEG, and JPEG-2000 (See Fig - 4(b)).
3- Taking more time for compression, and decompression, because our approach produced three arrays;

SNC-Array, RLE, and Non-Zero-Array, each array compressed by arithmetic coding independently.
The process led to more computations and recurrence calculating and may be led to increase
execution time for compression and decompression.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 4 (2009) No. 4, pp 311-320 319

5. REFRENCES
[1] K. Sayood, "Introduction to Data Compression", Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd

dition, 2000.

[2] Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing", Addison Wesley publishing company – 2001.

[3] S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet shareholding for image denoising and compression",.
IEEE Trans. Image Process. vol. 9, no. 9, pp. 1532.1546, 2000.

[4] K. R. Rao, P. Yip, Discrete cosine transform: Algorithms, advantages, applications, Academic Press,San Diego,
CA, 1990.

[5] S. S. Pradhan, K. Ramchandran, Enhancing analog image transmission systems using digital side information: A
new wavelet-based image coding paradigm, in:Proc. IEEE Data Compression Conf. (DCC), Snowbird,UT, 2001,
pp. 63–72.

[6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans.
on Image Processing, vol. 1, no. 2, pp. 205–220, Apr. 1992.

[7] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for encoding regions of interest in the upcoming
JPEG 2000 still image coding standard,” IEEE Signal Processing Letters, vol. 7, no. 9, pp. 247–249,Sept. 2000.

[8] M.A.Figueiredo and R.D.Nowak, “An em algorithm fo wavelet-based image restoration,” IEEE Trans. On Image
Processing,vol. 12, no. 8, pp. 906–916, August 2003.

[9] I. E. G. Richardson, Video Codec Design, John Wiley & Sons, 2002.

[10] D. Marpe, H. Schwarz and T.Wiegand, “Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video
Compression Standard”, IEEE Transactions on Circuits and Systems for Video Technology, to be published in 2003.

[11] K. R. Rao and P. Yip, Discrete Cosine Transform, Academic Press, 1990.

[12] I. Witten, R. Neal and J. Cleary, Arithmetic coding for data compression, Communications of theACM, 30 (6),
June 1987

[13] W. Yang, F. Wu, Y. Lu, J. Cai, K. N. Ngan, and S. Li, .4-d wavelet-based multiview video coding,. IEEE
Transaction on Circuits and Systems for Video Technology, vol. 16, no. 11, pp. 1385.1396, Nov. 2006..

JIC email for subscription: publishing@WAU.org.uk

Mohammed Mustafa Siddeq: Using Shift Number Coding with Wavelet Transform for Image Compression

JIC email for contribution: editor@jic.org.uk

320

