
 ISSN 1746-7659, England, UK 

 
Journal of Information and Computing Science

Vol. 5, No. 1, 2010, pp. 041-046

Linearisation of Boundary Optimal Control Problems by 
Finite Element Method 

N. Davoodi, A. Kerayechian, M. Gachpazan+ 

Department of Applied Mathematics, School of Mathematical Sciences,  Ferdowsi University of Mashhad, 
Mashhad, Iran. 

(Received March 30, 2009, accepted August 6, 2009)  

Abstract. Purpose of this paper is to solve a nonstandard optimal control problem governed by ordinary 
differential equation by finite element method. In the first part of the paper, we describe the method of 
discretisation of continuous optimal control problem and then linearize the problem and obtain a linear 
programming. By solving the linear programming, the control and state functions and the value of objective 
function are obtained. 
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1. Introduction 
Optimal control is one of the most common techniques in dynamic optimization. This article is primarily 

aimed at instructors who teach and want to complement their teaching through simple numerical analysis. 
Realistic mathematical models of dynamical processes from scientific or engineering background may often 
have to consider different physical phenomena and therefore may lead to coupled systems of equations that 
include ordinary and partial differential equations as well as algebraic equations. 

The flight of a hypersonic aircraft under the objective of minimum fuel consumption may serve as a 
typical example. The flight trajectory is described, as usual, by a system of ordinary differential equations. 
This system is controlled by the usual control variables of flight path optimization under various control and 
state variable inequality constraints. There are several papers dealing with control problems with state 
constraints [8], [9], [2]. In [7], Kostreva and Ward introduced a new method for solving a state constrained 
boundary control problem with a min-max objective function with elliptic partial differential 
operator . )( yKLy 

Alt and Bräutigam in [1], develop error estimates for the solution of the discrete problem. For a 
discretization of the state equation by the method of Finite Differences and a piecewise approximation of the 
control.  Hinze in [6], by using the method of Finite Elements and derives upper bounds for semi-

discretizations where only the state variable z  is discretized and the control u  is an element of .  This 
paper is concerned with the one-dimensional elliptic problem of optimal control with ordinary differential 

operator 

2L

cy
dx
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The purpose of this article is to derive a technique for solving non-standard optimal control problems by 
finite element method. In fact, the problem reduces to a linear boundary control problem.  

In Section 2, we state the problem in terms of optimal control theory, in subsection 2.2, an outline of the 
finite element method in ordinary differential equation is presented and a family of discrete linear 
programming problems is defined. In Section 3, the main theoretical results are stated with an application of 
the continuous maximum principles. A two-level linear formulation of the problem is presented in Section 4. 
In Section 5, numerical results are presented to demonstrate the stability and efficiency of the numerical 
method to optimal configuration problems. 
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 The continuous problem and its discretisation  

2.1. Problem formulation 
Consider the state constrained boundary optimal control problem 
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Let the operator  be given by L
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where 

).,(         ,0 baonc   

Assume, furthermore that for all x  in  .0)( ],,[ xkba

Let   be a lower bound constraint on the state y  such that 2 ( , )C a b  f and 1( )b b  . Also,  is a 

given function and 1a  represents the boundary control. With the stated conditions and assumptions, the 

boundary optimal control problem (2.1) is well defined. 

2.2. Discretisation 
We now present the finite element discretisation scheme for problem (2.1). Let 
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and 
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where a  is the continuous, coercive, bilinear form on V , and   is continuous and linear form on V . 

),(1 baHzLet  be any element in  such that 1)( aaz   and 2)( abz  . Then the weak form of the 

boundary value problem (2.1) is: Find Vzy   such that 

.    ),(),( Vvvvya                                                            (2.6) 

( , )a bhT hThLet  be a partition of  where  is the length of the longest subinterval in . We associate as 

usual the finite element spaces  
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1Pwhere  is the set of all polynomials of degree less than or equal to 1. 

Now, we assume ,  1,..., 2ix i n  , denote the points at the end of all elements,  where 1nx a  , 

2nx b  , and we let , 1,..., 2i i n   , denote the functions of hX  which satisfy 

,2,...,1,   ,)(  njix ijji                                                        (2.8) 

i.e., the functions nii ,...,1,   or 2,...,1,  nii , form a basis of hV , or of hX . Let 
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)()( 11 xaxu nh   ,                                                              (2.9) 

and 

)()( 22 xaxg nh   .                                                          (2.10) 

For hh Xz   such that )()( auaz hh   and )()( bgbz hh  , the finite-dimensional variational problem is 

to find hVhh zy   such that 

hh Vvvvya      ),(),(  ,                                                      (2.11) 

Since any function hv V  may be written as a linear combination of the basis functions 1{ }n
i i  , the 

function hy  may be represented as 
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1afor some choice of the coefficients n ,...,1 , and . We define 
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and 1( ,..., )T
n   , so the discrete variational problem reduces to solving the linear system 

1

~
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1afor some choice of . 

Let h  be an element of hX  which approximates the continuous lower bound  . Let   be the vector 

of coefficients )( ih x , , n,...,i 1 and let )(
~

1 nh x . Then the finite-dimensional boundary control 

problem is stated as 
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For further discussion of the finite element method, the reader is referred to [3], [4] and [10]. 

3. Weak maximum principle 
In this section we consider the conditions under which the weak maximum principle holds for the 

continuous control problem and the discrete control problem. Using a linear reformulation of the problem, it 
is advantageous to consider the solution on boundary rather than the entire region. 

By the divergence theorem, the weak form of  

),0,0(0 Ly                                                               (3.1) 
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1( , )y H a b 1( , )y H a byIf  satisfies (3.2) then  is said to satisfy (3.1) weakly. Furthermore, if  
satisfies 

Vvcyvdxdx
dx

dv

dx

dy
xk

b

a

b

a
       ),0,0(0)(

 

 

 

 
,                                  (3.3) 

JIC email for subscription: publishing@WAU.org.uk 



N. Davoodi, et al: Linearisation of Boundary Optimal Control Problems by Finite Element Method 44 
 
then y  is said to satisfy (3.1) weakly. 

),(1 baHy 0Ly ),( baTheorem.  Let  satisfy , on . Then 
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0LyProof. We use the idea of Gilbarg and Trudinger [5], (3.3) and  implies that 
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for all v such that V  0yv . Taking }0,max{ lyv   where )}(),(sup{ byayl  , then Vv , 

 0)( xv almost everywhere, and 0v  on boundary. In a week derivative sense, 
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Combining (3.5), (3.6), 
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4. Existence and uniqueness of a solution 
 In [7], the existence of a solution to the state constrained boundary control problem is shown under 

twice differentiable conditions on the state constraint. In general, min-max problems do not have unique 
solutions; however, if a constant control is assumed, the min-max boundary control problem has a unique 
solution with implications for the convergence of the discrete boundary control problems. The weak 
maximum principle and discrete maximum principle are shown to hold under certain conditions and may be 
applied to the solutions of the boundary control problem in order to reduce the number of constraints. The 
continuous optimality conditions are also stated in an algebraic setting. 

5. Linear Subproblems 

The subproblems may be reformulated as linear programming problems. Let 1max{ , }s a
min s

 and e  be a 

n  vector of 1's. The min-max objective function is replaced by the objective function  and constraints 
es   and 1a  s . Adding 1n   constraints to the problem, the weak maximum principles applies to the 

discrete subproblems. Assume that  
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Under these conditions, the constraints es  are redundant. Thus, when the weak maximum principle 
holds, a valid linear formulation of the discrete boundary control problem is  
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6. Numerical results 
In order to illustrate our technique to solve the optimal control of system governed by ordinary 

differential equation, we consider following example: 
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Ly 2)( 2  2xwhere . Note that the maximum value of   is 2 and occurs at boundary  

which is the control point. 

By using the above procedure, the linearisation and discretisation of model (6.1) as the following form: 
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Now, by solving this problem, the optimal value of the objective function equal to 2, and also the optimal 
control on 2x   is equal to  2. 
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