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Abstract: Image restoration is an ill-posed inverse problem, which has been introduced the regularization 
method to suppress over-amplification. In this paper, we propose to apply the iterative regularization method 
to the image restoration problem and present a nested iterative method, called iterative conjugate gradient 
regularization method. Convergence properties are established in detail. Based on [6], we also simultaneously 
determine the regularization parameter based on the restored image at each step. Simulation results show that 
the proposed iterative regularization method is feasible and effective for image restoration. 
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1. Introduction  
Image restoration problem has been extensively studied and used in several areas of science and 

engineering [2][6][8-11]. It calls for the recovery of an original scene from a degraded observation. For 
example, stellar images observed by ground-base telescopes are degraded due to atmospheric turbulence, 
while there are also applications where the stellar images need to be restored even if they are not observed 
through the atmosphere. 

In most cases, the image degradation process can be modeled by a linear blur and an additive white 
Gaussian noise process, that is 

                       nHxy                                                                   （1.1） 

where nx,,y  are  vectors and represent respectively the lexicographically ordered 1MN NM   pixel 
observed degraded image, original image, and additive noise. The matrix H  represents the degradation 
matrix of size MN , which may represent a spatially invariant or a spatially varying degradation. The 
image restoration problem calls for applying an inverse procedure to obtain an approximation of the original 
image 

MN

x  based on the image degradation model. It is an ill-posed problem, which means that a small 
perturbation in the data leads to a large perturbation in the solution. Therefore, a regularization method has to 
be used in order to determine a useful approximation of the true image. One of the most popular 
regularization techniques is Tikhonov regularization. This method approximately solves (1.1) by solving the 
unconstrained minimization problem  

),(min xM
x

                                                                      (1.2) 

With 
2

2

2

2
),( xHxyxM                                                           (1.3) 

where   is a positive regularization parameter. A solution of (1.2) is computed by solving its first-order 
conditions  

yHxIHH TT  )（                                                              (1.4) 
This method has been extensively studied in image restoration. However for ill-posed problem, the 

convergence rate may be improved [4] in an iterated version of (1.4) given by 

yHxxIHH T
kk

T    1)(                                                       (1.5) 
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We call it iterative regularization. 

In this paper, we propose to apply the iterative regularization method to the image restoration problem 
and present a nested iterative method, called iterative conjugate gradient regularization (ICGR) method. 
Convergence properties are established in detail. Based on [6], we also simultaneously determine the 
regularization parameter based on the restored image at each step. Simulation results show that the proposed 
iterative regularization method is feasible and effective for image restoration. 

The rest of the paper is organized as follows. In Section 2, ICGR method is introduced, along with the 
choice of regularization parameter. In Section 3, convergence properties are established. Experimental results 
are presented in Section 4 and conclusions are reached in Section 5. 

2. Iterative Regularization 
For ill-posed problems involving closed, densely defined linear operators, M. Hanke and C. W. Groetsch 

have studied the iterative regularization method [4]. Image degradation is an ill-posed problem, and the 
iterative regularization method could be naturally applied to this problem. For the image degradation model 
(1.1), iterative regularization is 

yHxxIHH T
kk

T    1)(                                                       (2.1) 
which is equivalent to the following minimization problem. 

),(min xL
x

                                                                      (2.2) 

where 
2

2

2

2
),( kxxHxyxL                                                        (2.3) 

2.1. Choice of regularization parameter   
In order for the nonlinear cost function ),( xL  to have a global minimum, the regularization parameter 

  should be chosen in a proper way. It is noted that choosing a suitable regularization parameter a priori is 
difficult, though there are many meaningful choices of the regularization parameter. In this paper, the 
following properties are needed which is adapted from [6]. 

Property 1.   should be a function of the smoothing functional: We choose   to be proportional to 
),( xL  which represents the regularized noise power. 

Property 2. Extreme minimizers of ),( xL . The minimizer of ),( xL  should represent a solution 
between two extreme solutions: one representing the generalized inverse solution of (1.1) when the data are 
noiseless, and the other representing the smoothest possible solution, when the noise power becomes infinite. 

Property 3. The functional ),( xL  should be convex for all choices of  . This requirement on 
convexity is obviously very important, since a local extremum of a nonlinear functional becomes a global 
extremum, if the functional is convex. Therefore, the iterative algorithm that will be employed for obtaining 
a minimizer of ),( xL  will not depend on the initial condition. 

Based on the above properties,   can take the following form, 

2

2
1

2

2

kxx

Hxy








  

Also according to [6], we set 
2

2
1 2 y . 

2.2. ICGR method 
The basic idea of our proposed ICGR method is as follows. Given a starting vector , suppose 

that we have got approximations  to the solution  of the normal equation 

nRx 0

kxxx ,...,, 10
*x

yHHxH TT                                                                     (2.4) 

Then the next approximation  to  is obtained by solving the following equation iteratively, 1kx *x
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kk
T

k
T xyHxIHH   )(                                                       (2.5) 

with the CG method, to certain arithmetic precision. More precisely, this iterative CG regularization method 
can be described as follows. 

Algorithm 2.1. (The ICGR method) 

1. Input the largest admissible number of outer iteration  and the outer iteration stoping tolerance maxk   

2. Input the largest admissible number of inner iteration  and the inner iteration stoping tolerance maxl   

3. Input the starting vector x  and the regularization parameter 0, k  

4. Do the following steps 

4.1. 
2

2
)0(,, srHsHxyr T    

4.2.  1,  lxz

4.3. Do while )0()1(  l  and  maxll   

(a) If   then 1l 0  and sp   
else 

)2()1(  ll   and psp   

(b)  Hpq 

(c)  pqHw T 

(d) wpTl )1(    

(e) pzz   

(f) wss   

(g) 
2

2
)( rl   

(h)  1 ll
4.4. EndDo 

4.5. rres
2

2

z

xx 
  

4.6. zx   
4.7. Update   
4.8.  1 kk

5. Until rres   or  max

Notice that, at  outer iterates,  is chosen as the initial approximation, which means that 

kk 
thk 1kx

1 kxx  is zero for , therefore, we take 1kxx   at the  outer iterates the following form, thk

2

2

2

21

2 y

Hxy k
  

3. Convergence Analysis 
Before proving the convergence of the ICGR method, we first introduce some notations and lemmas. 

For a symmetric positive definite (SPD) matrix nnRB  , we use )(B  to represent its spectrum set, 

and )(min B  and )(max B  its smallest and largest eigenvalues respectively.  For any nRz  , its B-norm is 

defined by BzzTz B  . For a nonsymmetric matrix nnRH  , we use )(H  to represent its singular 

value, and )(min H  and )(max H  its smallest and largest singular values respectively. Clearly, for any 

nonsingular matrix H , )(Hmax2
H  . 
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Lemma 3.1. Let nnRB   be an SPD matrix. Then for any nRz , 

B
zzB 

2

2
1

 

and 

BzB
zBBzB )()( max2min    

Lemma 3.2.  Let nnRB   be a SPD matrix. If the CG method is started from n initial iterate nRx 0 , 

ter k -steps of ite

 a

then af  generates an approximation to the solution of the linear equati

, which satisfies  

rates, it kx  *x  on 

yBx 

B
kBzPp xx

BB
xp

kk 0
minmax

0)(
)()(

2)(maxmin   ）（


 k

BB
k

BB
xzxx *minmax** )()(








whe nomial ore   ppPk |  is a poly f degree k  and 1)0( p  is the set of thk  degree residual polynomials. 

Corollary 3.1.  If  nnRH   is an nonsin and nonsymm ic matrix. If the CG method for 

equation (2.5) is started from an initial iterate nRz 0 , then after  km -steps of 

gular etr

iterates, it generates an 

approximation  to the solut  of the linear equation (2.5), which satisfies 
kmz ion (z ,*)k

)(
0

2
min

2
max

( )()( IHH
kk

H
m

k
TTk

HH  

,*)(
2
min

2
max

)

,*)( )()(
2 kmkk

IH

k k

k

zz
HH

zz








 ）（  

eorem Th 3.1.  Let nnRH   be a nonsingular matrix. If the ICGR method is started from an init l 

iterate nRx 0 , and app

ia

steps of CG iteration to get the next approximation to the solution 

of the norm l equation . Then 

lies km  

HHx TT 
1kx  *x  

a yH

2

*

2

*
1 )()() xxHmqxxH kkk （                                               (3.1) 

where 

km

kkk

k
HHH )()())( 2

min
2
max

2
max

2
3

 

kkk

k

k HHH
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H
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(
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2
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2
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2
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







 





－

   (3.2) 

t the exact solution of the linear equation (2.5), i.e., 

 it satisfies 

CG iteration at the outer iterate of the regularized CGNR 
method. Then from Corollary 3.1 we have 

e ,)( yHxc T
kkkk   ,*)(kxProof. Deno

),()( ,*)(
k

k
k

T cxIHH    

and  ),( kmkz  the final result of the inner 

k
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,*)()0,(

2
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k
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


  

Notice that  , the above estimate immediately leads to ),(
1

)0,( , kmk
kk

k zxxz  
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2
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)()(
(2

IHH

k
k

m

kk

kk

IHH

k

K
T

k

k
T

xx
HH

HH
xx

 








  

or and 

Then we have 

 kk Hxyr  IHHB k
T

k  )( . Define the vect
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11

1 


  kkkkkkk
T

k xBcrHHIHHr   

                                                                 (3.3) )))()((()( 1
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By using  (3.4) and taking 2-norm on both sides of (3.3), we get 
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(3.1) is proved. 

4. Experimental Results 
In this section we present the results of two image restoration test problems, in order to illustrate the 
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performance of the proposed iterative regularization method. 

The first is Satellite, which is an image restoration test problem that was developed at the US Air Force 
Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico. The image is a 
computer simulation of a field experiment showing a satellite as taken from a ground based telescope, and 
therefore represents an example of atmospheric blurring. The true and blurred, noisy images have 256256  
pixels, and are shown in Figure 1. Figure 3(a) displays the restored image. It has a relative error of 0.2697, 
and its computation requires 45 iterations. 

In the second example, we use the Grain test image which is contained in the RestoreTools package [9]. 
The true and blurred, noisy images have 256256  pixels, and are shown in Figure 2. Figure 3(b) displays 
the restored image. It has a relative error of 0.0683, and its computation requires 27 iterations. 

Both the numerical experiments have been carried out on a Pentium IV PC using Matlab 7.1. In both the 
experiments, the initial iterate  has been chosen as the blurry and noisy image. The outer iteration 

stopping tolerance 

0x

.30.1 e  That is the iteration is terminated when 30.1
21

21 





e

x

xx

k

kk
. The inner 

iteration is set as l  and  20max    is set as eps , that is 162204.2  e . 

Table 1 shows the numerical results of the proposed algorithm applied to the test problems. The second 

column of the table gives the relative error 
2

2

real

realcomputed

x

xx 
  between the computed solution and the real 

one. The third column reports the number of the outer iterates. 

Table 1. Numerical results for the test problems 

Test problem      Relative error       Inerations 

Satellite                 0.2697                   45 

Grain                    0.0683                     27 

                 
a.Original image                                                                                 b.  Blurred image 

Figure 1:  Original and blurred satellite image 
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a. Original image                                                                 b.  Blurred image 

Figure 2:  Original and blurred Grain image 

            
(a)                                                                                             (b) 

Figure 3:  Restored Satellite image (a) and restored Grain image (b)  

5. Conclusion 
We propose an iterative conjugate gradient regularization method to the image restoration problem. 

Experiments have been done for two image restoration problems, the results illustrate that the proposed 
method has good performance.  
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