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Abstract. Recently, various papers investigated the geometry features, synchronization and control of 
complex network provided with certain topology. While, sometimes the exact topology of a network is 
unknown or uncertain. Using Lyapunov theory, we propose an adaptive feedback controlling method to 
identify the exact topology of a rather general weighted complex dynamical network model. By receiving the 
network nodes evolution, the topology of such kind of network with identical or different nodes, or even with 
switching topology can be monitored. Experiments show that the methods presented in this paper are of high 
accuracy with good performance.  
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1. Introduction 
Today, the complex network present exist in every corner of the world, from the communication 

networks to social networks, from cellular networks to metabolic networks, from the Internet to the World 
Wide Web [1-11]. The study of complex networks is under way. In many of the existing literature shows that 
synchronization and control of a complex dynamic network with some topology related[12-20], and in the 
real world, sometimes a complex and dynamic network topology is the true unknown or uncertain[21]. Based 
on the above arguments, to determine the complex network topology becomes a key problem in many 
disciplines, such as DNA replication, modification, repair and RNA (ribonucleic acid) transcription. It is of 
significance that by monitoring dynamic behavior of proteins during the process of recognition through 
NMR (nuclear magnetic resonance) technology [8], Therefore, to determine interactive network nodes that 
may exist in different topological structure of great significance. By adaptive feedback controlling method, 
the real network is served as a drive network, and we construct another response network receiving the 
evolution of each node, then the exact topology of the real network can be identified. Along with it, the 
evolution of every node is traced. Using Lyapunov stability theory [22-23], mathematical analysis of the 
mechanism is developed rigorously. Our controlling approach can be applied to a large amount of rather 
general weighted complex dynamical networks not only with identical nodes, but also with different nodes. 
Besides, even when the topology of the complex dynamical network changes, it can be monitored as well. 
All these will contribute to improving efficiency and accuracy of network analysis. 

The left paper is organized as follows. Section 2 describes the topology identification method for a 
general weighted complex dynamical network with identical nodes. Identifying topology mechanism for 
such kind of network consisting of different nodes are detailed in Section 3. Section 4 gives three 
computational examples include network with identical nodes, network with different nodes and switching 
network with different nodes to illustrate effectiveness of the proposed approach. In section 5. we introduce 
adaptive controlling method, In section 6, we give an example and numerical simulation, The main ideas and 
conclusions are summarized up in Section 7.  

2. Model description and preliminaries  
In this paper, a complex dynamical network with time-varying coupling delay consisting of N identical 

nodes with linear couplings is considered, which is characterized by 
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inner-coupling matrix,  is a constant matrix, ( )ij N NB b  ( ) ( ( ))ij N NA t a t   is the unknown or uncertain 

weight configuration matrix, : N Nf R R R  is a smooth nonlinear function, ( ) 0t   is the time-varying 

coupling delay. If there is a connection from node i  to node j ( )j i ， then the 

coupling ,otherwise,   ( ) 0ij ija t c  ( )ija t 0 ( j i) and the diagonal elements of matrix ( )A t are defined 

as    . 
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Assumption 1. Time delay ( )t is a differential function with [2 ( ) 1,1]t   . 
Assumption 2. Suppose there exists a constant L, such that 

( , ( )) ( , ( )) ( ) ( )f t x t f t y t L x t y t    

holds for any time-varying vectors ( )x t , ( )y t , and norm  of a vector X is defined as 1 2( )TX X X . 

Lemma. 1 2( ) [ ( ), ( ), ( )]T n
nx t x t x t x t R   , 1 2( ) [ ( ), ( ), ( )]T n

ny t y t y t y t R   , 

There exist a positive definite matrix n np R  ，the following matrix inequality holds: 
12 T T Tx y x Px y P y  . 

3. Adaptive controlling method 
In this section, we make drive-response complex dynamical networks with time-varying coupling delay 

achieve adaptive projective synchronization by using adaptive controlling method. We refer to model (1)as 
the drive complex network, and consider a response network described as following: 
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where is the response state vector of the i th node， are 

nonlinear controllers to be designed, and 

1 2( ) ( ( ), ( ), ( ))T
i i i iNy t y t y t y t R 

ˆ

N iu 1,2,i N 
ˆ( )ij N NA a  is estimation of the weight matrix ( )A t . 

Let  ( ) ( ) ( ), ( 0)i i ie t x t y t    , is a scaling factor and ˆij ij ijc a a  , with the aid of Equations. (1) 

and (2), the following error dynamical network can be obtained: 
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j j
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 
 
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Banach space in the definition of norm convergence with n-dimensional domain the absolute value of 
real convergence and, in accordance with the definition of synchronization we tend to know:  

ˆlim ( ) lim 0i ij ij
t t

e t a a
 

    

Theorem 1. Suppose Assumption 1 holds. Using the following adaptive controllers and updated laws: 
1
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d
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d
                                                                     (6) 

where is the adaptive feedback gain vector to be designed, 
1 2( , )T

Nd d d d R 
0,

N

ij  0 ( 1, 2,ik i   )N are arbitrary constants, then the response network (2) can synchronize with 
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the drive network (1), and the weight configuration matrix ( )A t  of network (1)  can be identified by 
ˆ ( )A t ,i.e., ˆlim ( ) lim 0i ij ij

t t
e t a a

   
     . 1,2, ,i N 

Proof. Choose the following Lyapunov function: 
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                              (7) 

where is a positive constant to be determined. Calculating the derivative of（7）along the trajectories of 

(3), and with adaptive controllers(4) and updated laws (5) and (6).Thus, we obtain： 

*
id

1 1 1

1 1 1 1 1

( ) ( )[ ( ) ( , ( )) ( , ( )) ( ) ( ( )) ( ) ( ( )) ]

1 1 1 1 ( )
( ) ( ) ( ( )) ( ( ))

1 1

N N N
T
i i i i ij j ij j i

i j j

N N N N N
T T

ij ij i i i i i i
i j i i iij i

t e t Be t f t x t f t y t c H t y t t a H t e t t u

t
c c d d e t e t e t t e t t

k

    

  
  

  

    

        


    

 

  

   

V
 

1 1 1 1

( ) ( ) ( ) ( ) ( ( )) ( )[ ( , ( )) ( , ( ))]
N N N N

T T T
i i i ij j i i i

i i j i

e t Be t e t a H t e t t e t f t x t f t y t 
   

        

*

1 1 1

1 1 ( )
( ) ( ) ( ( )) ( ( )) ( ) ( )

1 1

N N N
T T
i i i i i i i

i i i

t
e t e t e t t e t t d e t e t

  
   


    

    T  

1 1 1 1

*

1 1 1

( ) ( ) ( ) ( ) ( ( )) ( ) ( )

1 1 ( )
( ) ( ) ( ( )) ( ( )) ( ) ( )

1 1

N N N N
T T T
i i i ij j i i

i i j i

N N N
T T
i i i i i i i

i i i

e t Be t e t a H t e t t L e t e t

t
e t e t e t t e t t d e t e t



  
 

   

  

   


    

 

  

   T

 

* 1 1 ( )
( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( )) ( ( ))

1 1
T T T T T Tt

e t Be t Le t e t e t Pe t t e t D e t e t e t e t t e t t
 

 


        
 

  

*1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1

1 ( ) 1
( ( )) ( ( )) ( ( )) ( ( ))

1 2

T T T T T T

T T

e t Be t Le t e t e t PP e t e t D e t e t e t

t
e t t e t t e t t e t t


    


    



     




 

Let： ,
1 2( ) ( ( ), ( ), ( ))T T T T N

Ne t e t e t e t R   N ( ( ) ( ))P A t H t  , where  represents the Kronecker product. 

From Assumption 1, we get1 ( ) 1
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
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where I is the identity maximal( ),(1,1, 1)
N

I diag

 * * *

1 2( , , )*
ND diag d d d  . 

The constants ( ) can be properly chosen to make *
id 1,2,i  N ( ) 0V t  .Therefore, based on the 

Lyapunov stability theory, the errors vector  lim ( ) 0
t

e t


  and ˆlim ( )
t

A t


( ) 0A t  .This implies the unknown 

weighs can be successfully using adaptive controllers (4) and update laws (5) and (6). Further, we can 

further the value of  to determine the value of constant , and we define the norm: 
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Respectively, ( , ( ))iDf t x t and ( , ( ))iDf t y t  are in the point ( )ix t and  the Department of Jacobin 

Matrix. When 

( )iy t

1L L , we easily get: ( ) 0V t  . According to Lyapunov stability theory we 

get l  im


( ) lim ( ) ( ) 0i i i
t t

e t x t y t


  

4. A weighted complex network with different node dynamics 
In this subsection, we consider a weighted complex dynamical network consisting of different node 

dynamics which is described by  
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, : N Ng h R R R  are different smooth linear vector functions. Similarly, a useful hypothesis is given as 

follows： 

Assumption 3. (A3)Suppose that there exist positive constants   and  , satisfying  

( ) ( )g y g z y z     ( ) ( )h y h z y z    

where y, z are time-varying vectors. 

5. Adaptive controlling method 
For the sake of identifying topology of network model (9) and tracing network nodes evolution, anther 

generally controlled complex dynamical network is introduced here:  

*
1

1

*
2

1

ˆ( ) ( ) ( , ( )) ( ) ( ( )) 1

ˆ( ) ( ) ( , ( )) ( ) ( ( )) 1

N

i i i ij j i
j
j i

N

i i i ij j i
j
j i

y t B y t g t y t a H t y t t u i N

y t B y t h t y t a H t y t t u N i N












      



        











                                (10) 

Then, we have the error system: 
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where ( ) ( ) ( )i i ie t x t y t   ( 0)    Similarly, the following adaptive controlling mechanism can be 

deduced. 

ˆij ij ijc a a 

Theorem 2. Suppose that A3 holds. The weight configuration matrix ( )A t  of general linearly coupled 

complex dynamical network (9) can be identified by the estimation ˆ( )A t  using the following response network: 
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where [2 ( ) 1,1]t    , d is sufficiently large positive constant to be determined. We then have: 
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nN

n N N

B d I

Q A

B d I





 

  
                

t H t
 

Clearly, the matrix Q is negative definite when the positive constant d is large enough. Similar to the 

proof method of Theorem 1, we obtain lim ( ) 0i
t

e t


  for 1,2,i N   and lim 0ij
t

c


  for . That 

is, the weight configuration matrix 

, 1,2,i j N 

( )A t  can be identified by the matrix ˆ( )A t . Thus the proof is completed. 

Remark 1. In this theorem, the weighted complex dynamical network is built up of two types of 
different nodes. For networks with more types of ones, similar work can be generalized easily. From this 
theorem, it is shown that using similar adaptive feedback controlling approach, the exact topology of model 
(9) can be identified, and the evolution of every node can be traced at the same time. On account of the 
widespread circumstances in which considerable weighted complex dynamical networks with different nodes 
exist, this mechanism is of great significance in practice. 

6. Numerical simulation  
Let us consider the following Lϋ chaotic system 

1 2 1 1

2 2 1 3 2

3 3 1 2 3

( )

( , ( ))

x a x x x

x cx x x B x f t x t

x bx x x x

     
             
           





 

where  
1 3

1 2

36, 3, 20, 0 0 , ( , ( ))

0 0

a b c B c f t x t x x

b x

         
    

0 0a a  
,

x







5 5

6 3 2 0 1

3 4 1 0 0

( ) ( ) 2 1 3 0 0

1 0 0 5 4

0 0 0 4 4

ijA t a 

 
  
   
 

 
  

Now, we consider a weighted linearly coupled complex dynamical network (1) with coupling delay 
consisting of 5 identical Lϋ chaotic systems. Taking the weight configuration coupling matrix 

1

( ) ( ) ( , ( )) ( ) ( ( )) 1, 2, , 5
N

i i i ij j
j
j i

x t Bx t f t x t a H t x t t i



       

We assume that 
3 ˆ( ) , ( ) 0.1, 0.5, 1, 1, (0) 3,i ij ijH t I t k a          

(0) (0.1 0.1 ,0.2 0.1 ,0.4 0.1 )T
ix i i i    ,  Therefore, according to 

Theorem 1, by using the following response network, the controller and updated laws given by 
(0) (1.3 0.1 ,0.4 0.1 ,0.6 0.1 )T

iy i i    i
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1

ˆ( ) ( ) ( , ( )) ( ) ( ( )) , 1,2, ,5
n

i i ij j i
j
j i

y t By t f t y t a H t y t t u i



        

1
[ ( ) ( , ( )) ( , ( ))], 1, 2, ,5i i i i iu d e t f t y t f t y t i 


      

( ) ( ( )) ( ), 1,2, ,5T
ij ij j ic H t y t t e t i      

*

(1 ) ( ) ( ), 0, 1,2, ,5Ti
i i i i i

i

d
d k e t e t d i

d
       

Then, some elements of matrix ˆ( )A t and the synchronization errors ( ) ( 1, 2, ,5)ie t i   are shown in Figs. 1. 

The numerical results show that adaptive scheme for the drive-response complex network is effective in 
Theorem 1. 

   
Fig. 1. Estimation of the weight matrix A(t) with time t. 

From the process to prove theorems in this paper, we can learn that different nodes of the numerical 
simulation of complex network nodes in a network with the same approximation, in which we have omitted 
the former numerical simulation. 

7. Conclusion 
In this Letter, the nonlinear controllers and adaptive updated laws have been proposed to study the PS 

between two complex networks with time-varying coupling delay. With the Lyapunov stability theory and 
the adaptive control method, two PS theorems have been proposed, and the weight matrix A(t) can be also 
identified. Numerical results demonstrate that the proposed approach is effective and feasible. 
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