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Abstract. To rapidly and accurately search the corresponding points along scan-lines, rectification of 
stereo image pairs are performed so that all the epipolar lines are parallel to the horizontal scan-lines and the 
vertical difference between the corresponding epipolar lines is zero. According to the layered rectification 
algorithm presented by charles loop, we can divide the process of rectification into three steps including 
projective transformation, affine transformation and shearing transformation. The key to proposed algorithm 
is the computation of projective matrix, the algorithm uses the affine epipolar geometry constraint to compute 
projective matrix and determines the optimal value of unknown parameters in projective matrix by immune 
monoclonal strategy. In the process of solving the matrix, the algorithm does not require the relative matrix 
be positive definite. The experiments show that the proposed algorithm is an effective image rectification 
algorithm and it has the obvious advantage in mean vertical difference, distortion and speed of rectification. 
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1. Introduction 
In stereovision, stereo matching is the key to solving various problems. Searching the corresponding 

points in stereo image pairs is along the corresponding epipolar lines of the two images. To improve the 
speed and precision of search, rectification is used to align the epipolar line with the conjugate epipolar line, 
making them coincide with the horizontal scan-lines and reducing stereo matching from a 2-D to a 1-D 
search. 

The rectification of stereo image pairs can be performed under the condition of calibrated camera [2], but 
generally the rectification is under the uncalibrated condition, which has become an important research field 
of stereovision. Therefore, photogrammetrists all over the world present various algorithms for rectifying 
epipolar line. Hartley [3] determines the projective matrix through the constraint that difference between the 
corresponding points is minimum. Francesco [4] presents an algorithm of image rectification without 
computation of fundamental matrix and only dependent on coordinates of corresponding points, but the 
initial value computed by nonlinear optimization in the rectification lacks credit. Al-Zahrani [5] defines a 
reference plane by using arbitrary three groups of corresponding points in the stereo image pairs to determine 
the projective matrix, where the distortion after the rectification directly depends on the selection of three 
groups of corresponding points. Hsien-Huang P.Wu [6] determines and optimizes some parameters of 
projective matrix by minimizing the square sum of distance between image point and corresponding epipolar 
line, and estimates other parameters by shearing transform. Charles Loop [7] divides the transform matrix 
into a projective and affine component, and effectively reduces the distortion after image transform during 
the process of projective transformation, which is a high precise rectification algorithm of stereo image pairs. 
But the involving matrix must be positive-definite so as to compute projective matrix. Nevertheless these 
matrices may not be positive-definite because of the noise disturbance on corresponding image points. 
Therefore we cannot compute projective matrix and thus the rectification process fails. 

According to layered rectification algorithm presented by Charles Loop, the paper divides the process of 
rectification into three steps including projective transformation, affine transformation and shearing 
transformation, in which the computation of projective matrix is the important and difficult problem. The 
paper utilizes affine epipolar geometry constraint to compute projective matrix and determines the optimal 
values of unknown parameters in projective matrix by immune monoclonal strategy, which makes the 
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computation of the matrix not require the relative matrix be positive definite and ensures the completion of 
rectification for arbitrarily given corresponding image points. 

2. Layered rectification algorithm of stereo image pairs 
According to the algorithm presented by Charles Loop, the layered rectification algorithm of stereo 

image pairs includes three steps, i.e. projective transformation, affine transformation and shearing 
transformation. Rectifying matrices have the following form: 

llll PASH   ,  rrrr PASH 
First, we compute projective transformation matrices Pl and Pr such that all epipolar lines are parallel in 

stereo image pairs and the epipoles are mapped to infinity. Secondly, we compute affine transformation 
matrices Al and Ar such that all epipolar lines are parallel to horizontal scan-lines and the vertical difference 
between corresponding epipolar lines of image pairs is minimized. Thirdly, we compute shearing 
transformation Sl and Sr to reduce the horizontal distortion between the rectified images. The algorithm 
requires the involving matrices be positive definite when computing projective transformation matrix. These 
matrices are not positive definite if the noise has great influence on the corresponding points between image 
pairs, which makes the rectification not completed. To avoid the problem, the paper proposes the method that 
uses the epipolar constraint based on affine model to solve the projective transformation matrix. Furthermore, 
the precision of solving is raised by using immune monoclonal strategy in the process of computation.  

2.1. The epipolar constraint based on affine model  
According to the algorithm presented by Charles Loop, the projective transformation matrices Pl and Pr 

are determined by the corresponding epipolar lines wl and wr , which have the following form  
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Given an infinite point z in image Il, the following relation exists between epipolar lines wl and wr 
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By determining infinite point z, Pl and Pr should satisfy the constraint, i.e. mapping the epipoles el and er 

to points at infinity. 

Let ml and mr be the projections of a 3D point M in images Il and Ir respectively, F is a fundamental 
matrix of rank 2, then ml and mr satisfy the epipolar constraint equation  

0l
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r Fmm  
The epipolar lines in each image are parallel after we use Pl and Pr to transform the images, and the 

epipolar plane consisting of corresponding epipolar lines are parallel. So the image pairs satisfy the epipolar 
constraint based on affine model, as shown in Figure 1. The corresponding points satisfy epipolar geometry 
constraint after transforming the original image pairs with Pl and Pr, i.e. 
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where is the fundamental matrix between the transformed images. The fundamental matrix  has the 

form 
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where el=（elx、ely、1）T，er=（erx、ery、1）T and e is the unknown parameter. By substituting Eq. (1), 
(2), (4) into Eq. (3), we can see that parameters , and e are needed to be solved. 
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Fig. 1: the epipolar constraint based on affine model 

Given the corresponding points of stereo image pairs, parameters  ,  and e can be solved by 
minimizing Eq. (5) 
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where N is the number of corresponding point pairs, and m and m are corresponding points in images Iil , ir , l 

and Ir. In the situation of practical application, the rectified images may have larger distortion if we directly 
use the Eq. (5) as optimization function. Therefore, we add the Eq. (5) with three component constraint to 
make the optimization function change into  
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Whether we use Eq. (5) or Eq. (6) as optimization object function, projective transformation 

matrices and r have multiple solutions, i.e. there exist different P nd rP such that the optimization 

function achieve minimization. But some atric lP and rP lead to larger distortion on the rectified 
lP P l a

m e images. s

For the optimization function Eq. (5) or Eq. (6), we can arbitrarily set the value of parameters λ, u and e 
unless that λ and u are not zero simultaneously when selecting the initial values of unknown parameters. 
Although the method is simple and effective, the precision of rectification on image pairs is lower. To solve 
the problem, the paper uses the immune monoclonal strategy to optimize the objective function, which not 
only achieves optimization, but also reduces the distortion on the rectified images. 

3. Solution of projective matrices based on immune monoclonal strategy 
The paper uses immune monoclonal strategy to optimize and solve the objective function Eq. (6) related 

to projective transformation. In the process of optimization, the monoclonal operator is used to determine the 
optimal value of unknown parameters in the projective transformation. 

3.1. Monoclonal operator  
The monoclonal operator is an antibody random map induced by affinity, the state transfer of antibody 

population is denoted as the following stochastic process: 

)1()()()(:    kAkCkBkAC selectionmutationclone
MS  

where is the k-th generation antibody population at present, change into by clone, 

and change into by mutation, finally change into the next generation antibody 

population by selection. 
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According to the definition of algorithm in the artificial immune system, antigen, antibody, the affinity 
between antigen and antibody correspond to the objective function and all kinds of restrictive conditions, the 
optimal solution, matching degree between solution and objective function respectively. According to the 
affinity function between antibody and antigen, a point in the solution space is divided into several same 
points by using clonal operator, a new antibody population is attained after performing clonal mutation and 
clonal selection, therefore the monoclonal operator includes clone, clonal mutation and clonal selection. 

In the problem of optimizing the objective function Eq. (6), antigen and antibody correspond to optimal 
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solution and candidate solution respectively, and the affinity function between antigen and antibody is the 
optimized objective function itself. During one generation of evolution, the population of mutation solution 
nearby candidate solution is produced on the basis of affinity to enlarge the search range, realizing global 
search and local search simultaneously. 

3.2. Cauchy distribution 
In the process of function optimization, the paper selects the operator of Cauchy mutation such that the 

algorithm can overcome prematurity effectively, keep the diversity of solution and enhance the convergent 
speed. Because Cauchy mutation and Cauchy distribution are closely related, we introduce the Cauchy 
distribution here to show the feasibility of selecting Cauchy mutation. 

One-dimensional Cauchy density function centered on the origin is defined as: 
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where  and  is the scale parameter, and the corresponding Cauchy distribution function  is defined as: 0t t
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Cauchy density function  is similar to Gaussian density function, the difference between them is 

that: the former is slightly smaller than the latter in vertical direction, furthermore the former infinitely 
approaches to x axis, and the latter intersects with x axis. The relation between them is showed in the 
following Figure 2. 

)(xft

 
Fig. 2: The comparison between Gaussian density function and Cauchy density function 

   According to the above figure, we can see that Cauchy distribution easier produces random number far 
away from origin than Gaussian distribution, so we substitute Cauchy mutation for Gaussian mutation to 
generate offspring such that the algorithm is prevented falling into local optimum, effectively overcomes 
prematurity and has the ability of quick convergence. 

3.3. Implementation steps of algorithm 
When solving the projective transformation, the paper uses the immune monoclonal strategy to optimize 

objective function Eq. (6). The implementation steps of algorithm are as follows: 

(1) Initialize parameter. We set the initial value of unknown parameter , and e as random number 
produced by random function.       

(2) Judge halt condition. We judge whether the algorithm satisfies the halt condition, i.e., the optimal 
solutions of antibody population in the consecutive two iterations are not improved. If satisfying the halt 
condition, the algorithm will stop, determine the current value as the optimal solution and turn to step 8 for 
continuing. Otherwise the algorithm continues to implement step 3. 

(3) Clone. We clone the current parent individual of the k-th generation, and the size of clone is 10, then 
the population becomes new population B(k) . 

(4) Clonal mutation. The individual in the B(k) is added with Cauchy random number produced when t in 
the Cauchy density function equal to 1, and the population becomes C(k).  

(5) Calculate the affinity function. The affinity function in the algorithm is the optimized objective 
function Eq. (6). According to the result of every iteration, we compute affinity .  ))(( kCAff
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(6) Clonal selection. We select the individual as new parent, whose affinity is minimum. 

(7) Set k equal to k+1, the algorithm turns to step 2. 

(8) Get the optimal parameter, we can solve andlP rP according to the optimal parameter.  

When using above algorithm to optimize the objective function, the algorithm is needed to run some 
times such that we can select the optimal parameter estimation not only to obtain small distortion of rectified 
images, but to achieve good rectification effect. For solving the projective matrices, the algorithm does not 
require any matrices be positive definite when estimating infinite point, completing the computation of 
projective matrices under the condition of arbitrarily given corresponding points in the images. 

4. Experiments and analysis 
This paper considers two aspects to evaluate the distortion of before and after rectification. Firstly, we 

compute the mean of difference in y coordinate of corresponding points in images to evaluate rectification 
accuracy of vertical difference between corresponding epipolar lines of images; the formula of computation 
is as follows:  
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where ,org recy y  are denoted as the mean of difference in y coordinate of corresponding points before and 

after image rectification; indicates y coordinates [6]. Secondly, we compute the mean of difference in x 

coordinate of corresponding points to evaluate the distortion of horizontal difference after rectification, the 
formula of computation is as follows 
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where ,org recx x  are denoted as the mean of difference in x coordinate of corresponding points before and 

after image rectification; ( )x indicates x coordinates [6]. 

 

Fig. 3  stone pillar 

The paper carries out two groups of experiments to observe the effect of immune monoclonal strategy on 
the result of image rectification in the problem of solving projective matrices. In the first group of 
experiments, the proposed algorithm is used to rectify the original image pairs. We use the immune 
monoclonal strategy to optimize two unknown parameters in the projective matrices in the course of 
rectification. In the second group of experiments, the algorithm sets initial values of λ, u and e as one and 
determines the projective matrices by Levenberg-Marquardt nonlinear optimization algorithm to complete 
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rectification. In the two groups of experiments, the methods of solving affine transformation and shearing 
transformation are same. 

In experiments, selected stereo image pairs are representative and reflect different imaging situation of 
vision system. The figures of experimental results are divided into two parts: the upper parts are original 
image pairs, the lower parts are results of rectification getted by using the proposed method. In these figures, 
the decussating points express corresponding points, the beelines express epipolar lines. 

 

Fig. 4  stele 

 

Fig. 5  board 

 

Fig. 6  window 

When the proposed algorithm is used for rectification, it is needed to run about 5 times to get the optimal 
parameter estimation such that the rectified images have small distortion and the effect of rectification is 
good. The algorithm uses affine epippolar geometry constraints to compute projective matrices, therefore it 
is capable of completing the computation of projective matrices for any given image pairs. 
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Because the projective transformation is the first stage of image rectification, it has greater influence on 
the result of rectification. In the two groups of experiments, the results of rectification are different, which 
depend on whether use the immune monoclonal strategy to determine projective matrices or not. And the 
results of rectification are showed in the Table 1. By comparing the results of these two groups of 
experiments, we draw a conclusion that the mean of difference in y coordinate of corresponding points in the 
first group of experiments is evidently less than the mean in the second group of experiments. From here we 
know that it has the absolute advantage that immune monoclonal strategy is used to determine projective 
matrices in the process of rectification.  

Table 1  two results of rectification 

 
Original image pairs 

The result of the first 

group of experiments 

The result of the second 

group of experiments 

      method 

 

  name 
orgx  orgy  recx  recy  recx  recy  

Fig.3 78.438 6.9375 40.891 0.39333 78.331 0.88948 

Fig.4 188.55 33.85 369.19 0.59451 402.63 0.63263 

Fig.5 63.417 152.33 196.24 0.3806 179.72 0.48182 

Fig.6 83.278 63.5 11.982 0.38727 24.884 0.5422 

 

      
 
 
 
 
 

5. Conclusions 
On the basis of layered rectification algorithm presented by Charles Loop, the paper divides the process 

of rectification into three steps including projective transformation, affine transformation and shearing 
transformation, in which the computation of projective matrices is the key of rectification algorithm. The 
paper uses affine epipolar geometry constraints to compute projective matrices and determines the projective 
transformation by immune monoclonal strategy, which makes the projective matrices have the global 
optimal solution for any given corresponding image points. The experiments show that the proposed 
algorithm in the paper has the obvious advantage in mean vertical difference, distortion and speed of 
rectification. 
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