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Abstract. In this paper, the linear feedback controlling of a novel chaotic system is discussed. The chaotic 
system is a new attractor which is similar to the Lorenz chaotic attractor, but it is not topological equivalent 
with the Lorenz chaotic system. This Letter proposes a novel approach for controlling this new attractor by 
linear feedback functions. The results obtained in this paper show that the trajectories of a new chaotic 
attractor can be controlled to any periodic target orbits or points. Furthermore, some numerical simulations 
show that the developed controller design method is effective and feasible. Therefore, the linear feedback 
controlling of new chaotic system may have good application prospects. 
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1. Introduction  
The chaotic dynamical system is an interesting research area and has drawn wide attention. The 

responses of many nonlinear dynamical systems show some random phenomena. Today, this irregular and 
random-like behavior is termed as chaos and has attracted a great deal of researchers. Much work on 
analyzing and predicting the behavior of chaotic dynamical systems has been reported in the literature over 
the last years [1-2]. In order to make these results truly beneficial, many subtle issues on controlling chaos 
must be carefully investigated.Chaos control, in a broader sense, can be divided into two categories: one is to 
suppress the chaotic dynamical behavior and the other is to generate or enhance chaos in nonlinear systems. 
It is well known that most conventional control methods and many special techniques, such as Lyapunov 
function methods in paper [1], active control method in paper [2], linear state space feedback method in 
paper [3], inverse optimal control technique in paper [4], output feedback control technique in paper [5], and 
etc. 

 In this paper, the feedback control technique is employed to develop a very simple control law for 
guiding controlled a new chaotic system to any desired target periodic orbits or points. The organization of 
this paper is as follows. Firstly, some chaotic systems, include Lorenz system, Chen system, Lü system and 
our new system are described in Section II. Next, the controller design and the results on theoretical analysis 
of controlling chaos are presented in Section III. In Section IV, some numerical simulations are show the 
effectiveness and feasibility of the controller design method. Finally, the conclusions of this paper are 
summarized in Section V. 

2. Some chaotic systems description 
Since Lorenz found the first chaotic attractor in a smooth three-dimensional autonomous system, 

considerable research interests have been made in searching for the new chaotic attractors. In 1976, Rössler 
found a three-dimensional autonomous smooth chaotic system. Later, more and more attractors were found. 
Some new chaotic systems were recently coined, such as Chen system, Lü  system, Liu system, the 
generalized Lorenz system family, and the hyperbolic type of the generalized Lorenz canonical form [1,2]. 
For the purpose of system, now we describe the fellowing three chaotic systems and their chaotic attractors, 
respectively as follows. 
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Firstly, the model of Lorenz system is 
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with the paramethers ,  and 10a 3/8b 28c . 

Next, the model of Chen system is 
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with the parameters ,  and . 35a 3b 28c
Then the model of Lü system is 
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with the parameters ,  and . 36a 3b 20c

The new chaotic system is discussed in the fellow, its coined process is similar to the Lü attractor coined. 
It is a three-dimensional autonomous system, according to the detailed numerical simulation as well as the 
theoretical analysis, the chaotic attractor obtained from this new system is also the butterfly-shaped attractor. 
The chaotic system is a new attractor which is similar to the Lorenz chaotic attractor, but it is not topological 
equivalent with the Lorenz chaotic system [3,4].  

The following is our new chaotic system: 
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which is chaotic when ,  and 10a 3/8b 16c  (see Figs. 1-4). 

 

Fig. 1. The new chaotic attractor. 
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Fig. 2. x-y phase plane the new chaotic attractor. 

 

Fig. 3. x-z phase plane the new chaotic attractor. 

 

Fig. 4. y-z phase plane the new chaotic attractor. 

From the control engineering point of view, the new chaotic attractor provides another interesting 
framework for advanced control techniques since it is more complex than the known Lorenz system and 
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Chua’s system [6]. Moreover, it is more difficult to control the new system than the other than those already 
known chaotic systems due to the rapid change of the velocity in the z-direction [7]. Therefore, we will 
introduce a novel control law in the next section. 

3. Linear feedback control 
In this section, the main results with a new and simple control law will be discussed. The control law can 

drive the trajectories of the new chaotic system to any target periodic orbits or points. 

It is very interesting to control the chaotic system to approach any desired target periodic orbits and 
points. Here, two control inputs are added to the first two states in (4), and then the controlled system can be 
stated as follows: 
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According to the property of chaotic orbits, the new system can reach any point  near the chaotic 

attractor, but will not stay at  without further control. In order to stabilize the new system at 
0xx 

0xx  0xx  , 

the control inputs must satisfy the stable condition: 0///  dtzddtyddtxd  . 

Let the control inputs  and  be both linear, in the form: 1u 2u
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And the controlled system (4) becomes 














.

,

)),(( 000

bzxyz

yxzcxy

axsignxxxaaxx





                                               (7) 

Obviously, the system stated in equation (7) has a unique equilibrium point 
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It can be easily obtained that the Jacobian matrix  of system (7) is given by )( 0SJ
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And the corresponding characteristic equation of  is described as )( 0xJ

0])1()[( 2
0

2
0  xbbxaa  . 

Since the three characteristic roots of the above equation possess negative real part, in case  and 

, the unique steady state  is stable. Therefore, with the feedback control inputs (6), the 

new system will tend to the target point . 

0a
},1max{ 2

0xb  0S

0S

In order to guide the controlled system (4) to reach an arbitrary point 11, yyxx  , let the linear 
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controller be 
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where 111
2
1 cxybyxd  . In this case, the controlled system (4) becomes 
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Obviously, system (10) has a unique equilibrium point  byxyxS /,, 11111 . It can be easily verified from 

the Jacobian matrix  of system (10) which is given as )( 1SJ
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And the corresponding characteristic equation of  is )( 1SJ

0])1()[( 2
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1  xdbbdbxaa  . 

It has three characteristic roots possess negative real part, and the unique steady state  
is stable. Therefore, with the feedback control inputs (9), the new system will approach the target point 

. 
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Now, in order to guide the trajectories of the new controlled system to approach any target periodic 
orbits, we assume that  and  are periodic functions. Let 1x 1y

trytrx  sin,cos 11                                                       (12) 

and we use the linear time-varying controller 
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where tcrtrbttrd  cossin2/cos2sin3  . 

Similarly, under the feedback control inputs (13), we can prove that new system will tend to the target 
periodic orbit:  
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It is worth to point out that the above feedback controller (13) can be realized easily in practical 
application. In fact, we can design an outer oscillator, which can produce periodic sine signals. And then 
using the periodic signal and systematic output signal as control input signal, the new system can be 
stabilized to the periodic orbit (14) [8]. 

4. Numerical simulations 
In order to verify the control applicability of the proposed control laws (6), (9) and (13), we suppose that 
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system (4) is in its chaotic state currently, with parameters a  10  , b  8/3   and , and the initial 
conditions ,

c 16 
(0) 1.0x  (0) 1.0y    and (0) 10z  . The fourth order Runge-Kutta method is used to solve 

the systems with different equations, such as (7) and (10), and time step size 0.001 in all numerical 
simulations. 

With the control law (6), for different initial values 0x , the state response curves are shown in Fig. 5 (a) 

and (b). The numerical results indicate the system (4) can reach the target point 
2 2 2

0 0 0 0 0( , / ( ), / ( ))x bcx b x cx b x   within 1.5 seconds for every 0x . 

With the control law (9) applied, for different initial values 1x , 1y , the state response curves are shown in 

Fig. 6 (a) and (b). The numerical results tell us that the system (4) can reach the target point 1 1 1 1( , , / )x y x y b  

within 2 seconds for all 1x , 1y . 

With the control law (13) applied, for different radiuses r and angles  , the state response curves are 
shown in Fig. 7 (a) and (b). Moreover, the numerical results indicate us as follows: 

(1) For different radiuses r  and angles , the system can be stabilized at periodic orbits within 
2

 
seconds. The period is  /2T , and there is no distinct correlation between the period and the orbits. 

(2) When , the controlled system can be stabilized at the periodic orbit, but the shape and 
period of the orbit are different from the theoretical results. When , the system can not be stabilized at 
the periodic orbit. The possible reason lies in that the feedback signal becomes relatively weak. 

13.0  r
0r

(3) When 1r  and 12005.0  , the x-y plane projections of the orbits evolve from similar 
roundness to ellipse. 

All these results conform to our theoretical analysis. The possible difference may be caused by the 
relatively strong feedback signal [9, 10]. 

     

(a)                                                                             (b) 

Fig. 5. The controller guides the controlled system to approach the target points. 

(a) . (b))851117.19,977667.2,20(,20 00 Sx  )428571.11,142857.17,2(,2 00  Sx . 
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(a)                                                                                 (b) 

Fig. 6. The controller guides the controlled system to approach the target points. 

(a) . (b))200,20,30(,20,30 111 Syx  )14,6,7(,6,7 111  Syx . 

 

(a)                                                                            (b) 

Fig. 7. The controller guides the controlled system to approach the target periodic orbits. (a) 10,20  r . 

(b) 8,5.0  r . 

5. Conclusions and Remarks 
We have presented a new effective linear control law for guiding the trajectories of the new chaotic 

system to approach any target periodic orbits or points. Compared with the other existing chaos control 
methods, this controller can drive the controlled system to approach any targets within the least time. The 
method is based on the new chaotic system and the other known system. So, controlling the new chaotic 
attractor would be more significant than the other existing chaos control methods. Meanwhile, the results of 
controlling chaos can be deduced beforehand. It should be pointed out that the higher nonlinearity and 
complexity of the new chaotic attractor justify the practical applications of the proposed method to some 
other complex dynamical systems as well. And we can change the initial conditions and parameters to fit the 
target periodic orbits or points in practical applications. So, the linear feedback control of new chaotic 
system may have good application prospects. 

6. Acknowledgements  

JIC email for subscription: publishing@WAU.org.uk 



Lin Pan, et al: Controlling a Novel Chaotic Attractor using Linear Feedback 
 

JIC email for contribution: editor@jic.org.uk 

124

This work was supported by the Special Foundation for Improving Science Research Condition of 
Guizhou Province of China, the National ‘863’ Key Programme of China (2008AA042902), the Doctor Base 
Foundation of Colleges and Universities by the Ministry of Education of China (200802550007), the Key 
Scientific Research and Innovation Program of Shanghai Education Committee (09zz66) and the National 
Excellent Ph.D. Innovation Foundation of China (104060019137). 

7. References  
[1] Nijmeijer H and Berghuis H. On Lyapunov control of Duffing equation. IEEE Trans. Circuits and Syst. 1995, 42: 

473- 477. 

[2] Chen G and Ueta T. Yet another chaotic attractor. Int. J. Bifurcation and Chaos. 1999, 9: 1465-1466. 

[3] Lü J and Chen G. A new chaotic attractor coined. Int. J. Bifurcation and Chaos. 2002, 12: 659-661. 

[4] Guan X.P, Peng H.P, Li X.L, and Wang YQ. Parameters identification and control of Lorenz chaotic system. Acta 
Phys. Sinica. 2001, 50: 26-29. 

[5] Lü J, Zhou T, and Zhang S. Chaos synchronization between linearly coupled chaotic systems. Chaos Solitons and 
Fractals. 2002, 14: 529-541. 

[6] Lü J., Chen G., Cheng DZ, and Celikovsky S. Bridge the gap between the Lorenz system and the Chen system. Int. 
J. Bifurcation and Chaos. 2002, 12: 2917-2926. 

[7] Chen S and Lü J. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos Solitons and 
Fractals. 2002, 14: 643-647.  

[8] Feng J, Xu C, Tang J. Controlling Chen’s chaotic attractor using two different techniques based on parameter 
identification. Chaos, Solitons and Fractals. 2007, 32: 1413-1418. 

[9] Yau HT. Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons 
and Fractals. 2004, 22: 341-347.  

[10] Wuneng. Zhou, Y. Xu, H. Lu, Lin Pan. Physics Letters A. 2008, 372: 5775-5776. 


