
 ISSN 1746-7659, England, UK 

 

                                                          

Journal of Information and Computing Science
Vol. 5, No. 2, 2010, pp. 133-145

Multiwavelet Computed Radon-Based Ofdm Trasceiver 
Designed and Symulation under Different Channel Conditions 

Dr. Abbas Hasan Kattoush 1, +, Dr. Waleed Ameen Mahmoud 2, Dr. Atif Mashagbah 1 and Eng. 

Ahed Ghodayyah 3  
1 Head of EE Department, Tafila Technical University - Jordan 

2 Dean of Engineering College Al-Isra University - Jordan  
3 EE Department, Al Ahliyya Amman University, Jordan 

(Received September 24, 2009, accepted October 22, 2009) 

Abstract. Finite Radon Transform (FRAT) mapper computed in Fourier basis using fast Fourier transform 
(FFT) algorithm has the ability to increase orthogonality of sub-carriers, it is non sensitive to channel 
parameters variations, and has a small constellation energy compared with conventional FFT based 
orthogonal frequency division multiplexing (OFDM). It is also able to work as a good interleaver which 
significantly reduces the bit error rate (BER) performance of the OFDM system under severe channel 
conditions. In this paper the idea is developed towards increasing the orthogonality and increasing spectral 
efficiency of OFDM system structure. FRAT computed in discrete Multiwavelet transform (DMWT) basis is 
implemented in OFDM systems and compared with FRAT OFDM computed in Fourier basis under different 
channel conditions for different channels parameters values including multi-path gains vector, multi-path 
delay time vector, and maximum Doppler shift. As a result, the proposed structure gives a significant 
improvement in BER performance in Additive White Gaussian Noise (AWGN) channels, flat fading 
channels (FFC), and multi-path selective fading channels (SFC). 

Keywords: Discrete Multi-Wavelet Transform; Finite Radon Transform; Critical sampling algorithm; 

FRAT-FFT OFDM Transceiver; FRAT-DMWT OFDM Transceiver. 

1. Introduction  
Orthogonal frequency division multiplexing system is one of the most promising technologies for current 

and future wireless communications. It is a form of multi-carrier modulation technologies where data bits are 
encoded to multiple sub-carriers, while being sent simultaneously [1]. The process of combining different 
sub-carriers to form a composite time-domain signal is achieved using FFT and inverse FFT (IFFT) 
operations [2]. 

The main problem in the design of a communications system over a wireless link is to deal with multi-
path fading, which causes a significant degradation in terms of both the reliability of the link and the data 
rate [3]. Multi-path fading channels have a severe effect on the performance of wireless communication 
systems even those systems that exhibits efficient bandwidth, like OFDM [4]. There is always a need for 
developments in the realization of these systems as well as efficient channel estimation and equalization 
methods to enable these systems to reach their maximum performance [5]. The OFDM receiver structure 
allows relatively straightforward signal processing to combat channel delay spreads, which was a prime 
motivation to use OFDM modulation methods in several standards. 

The conventional Fourier based OFDM uses the complex exponential bases functions. Later these 
functions were replaced by orthonormal wavelets in order to reduce the level of interference as in references 
[6-9]. It was found that the Haar-based orthonormal wavelets are capable of reducing inter symbol 
interference (ISI) and inter carrier interference (ICI), which are caused by the loss in orthogonality between 
the carriers [6]. A main motivation for using wavelet-based OFDM is the superior spectral containment 
properties of wavelet filters over Fourier filters. It has been found that under certain channel conditions, 
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Wavelet OFDM does outperform Fourier OFDM and under other channel conditions the situation is reversed 
as in the selective fading channels. Further performance gains can be made by looking at alternative 
orthogonal basis functions and found a better transform rather than Fourier and wavelet transform. 

The Radon transform (RT) was first introduced by Johann Radon (1917) and the theory, basic aspects, 
and applications of this transform are studied in [10-12] while the FRAT was first studied by [13]. RT is the 
underlying fundamental concept used for computerized tomography scanning, as well for a wide range of 
other disciplines, including radar imaging, geophysical imaging, nondestructive testing and medical imaging 
[10]. Recently FRAT was proposed as a mapping technique in OFDM system [14]. As a result of applying 
FRAT, the BER performance was improved significantly, especially in the existence of multi-path fading 
channels. Also, it was found that Radon-based OFDM structure is less sensitive to channel parameters 
variation as compared with standard OFDM structure. 

In this paper the idea of one dimensional serial Radon based OFDM proposed in [14] is develop farther 
to words increasing spectral efficiency and reducing BER. FFT and IFFF in FRAT computation algorithm 
are replaced by DMWT and inverse DMWT (IDMWT). The new Radon-DMWT based OFDM system is 
based on a fast computation method for DMWT, the critical sampling algorithm. The purpose of this 
multiplicity is to achieve more properties which can not be combined in other transforms (Fourier and 
wavelet) [15]. Simulation results show that proposed system has better performance than Fourier, Radon, and 
wavelet based OFDM under different channel conditions. 

2. Discrete Multiwavelet Transform Computation  
As a natural extension of wavelet, Multiwavelet are designed to be simultaneously symmetric, 

orthogonal and having short supports with high approximation power, which cannot be achieved at the same 
time for wavelet using only one scaling function. The trick is to increase the number of scaling functions to 
raise the approximation power rather than one scaling function. It enhances the performance of many 
wavelet applications such as image coding and de-noising [16-17]. 

In particular, whereas wavelets have an associated scaling function )(t  and wavelet function )(t , 

multiwavelets have two or more scaling and wavelet functions. For notational convenience, the set of scaling 
functions can be written using the vector notation where is called the 

multi-scaling function. Likewise, the multiwavelet function is defined from the set of wavelet functions as 
(t) . When

 , )(),([)( 21
Tttt   )]( tr )(t

 T(t) (t) (t), r 21
1 r , )(t  is called a scalar wavelet, or simply wavelet. While in 

principle r can be arbitrarily large. The multiwavelets studied to date are primarily for 2r  [18]. 

The multiwavelet two-scale equations resemble those for scalar wavelets [19]: 


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Note, however, that { } and { } are matrix filters, i.e.,  and  are (
kH kG kH kG rr  ) matrices for each 

integer k . The matrix elements in these filters provide more degrees of freedom than a traditional scalar 
wavelet. These extra degrees of freedom can be used to incorporate useful properties into the multiwavelet 
filters, such as orthogonality, symmetry, and high order of approximation. However, the multi-channel 
nature of multiwavelets also means that the sub-band structure resulting from passing a signal through a 
multi-filter bank is different [18]. 

The two-scale equations (1) and (2) can be realized as a matrix filter bank operating on r input data 
stream and filtering them into 2r output data streams, each of which is down-sampled by a factor two. 

One famous multiwavelet filter is proposed by Geronimo, Hardian, and Massopust (GHM), the GHM 
filter [20]. The GHM basis offers a combination of orthogonality, symmetry, and compact support, which 
can not be achieved by any scalar wavelet basis [21]. According to equations (1) and (2) for GHM system 

kH

3G
 are four scaling matrices , , , and , and  are four wavelet matrices , , , and 

 [22]. 
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The multiwavelet coefficients that the low-pass filter (LPF) H  and high-pass filter (HPF) G  consists of 
are rr   matrices, and during the convolution step they must multiply vectors (instead of scalars). This 
means that multi-filter banks need r  input rows. In this case 2r  and two data streams enter the multi-filter. 
To create the two data streams from an ordinary single-stream input of length N , there are several 
possibilities. An important one of them is to create consistent approximation based equations that yield two 
length 2N  streams and a “de-approximation” that returns a length N  stream. This method maintains a 

critically sampled representation (produces 2N  length-2 vectors). The multi-filter processes two 2N  

point data streams using an approximation method suggested by Geronimo [20]. 

The aim of preprocessing is to associate the given scalar input signal of length N  (must be a power of 2) 
to a sequence of length-2 vectors in order to start the analysis algorithm. After the wavelet transform, inverse 
transform, and post-filtering should recover the input signal exactly if nothing else has been done. For 
critically sampled multiwavelets there are two methods of approximation: First-order approximation method 
and second- order approximation method. 

The first order approximation-based preprocessing [21] (where every two rows generate two new rows) 
can be summarized as follows: 

 For any odd row 

])[110861980(                      

])[110861980(                      

])[3736150(  

ven-rowprevious e.

 rownext even-.

owsame odd-r.odd-rownew




                                         (5) 

 For any even-row 

])[12( rowsame even-ownew even-r                                               (6) 

The second order approximation-based preprocessing [21] (where every two rows generate two new 
rows) can be summarized as follows: 

 For any odd row 

])[28/3(

])[88/3(

])[28/10(

even-rowprevious  

rownext even-

owsame odd-rwnew odd-ro




                       (7) 

 For any even-row 
][ rowsame even-ownew even-r                                   (8) 

It should be noted that when computing the first odd row, the previous even-row in equation (5) is equal 
to zero. The same thing is valid for equation (7). 

For computing DMWT, scalar wavelet transform matrices can be written as follows: 
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where  and  are the low and HPF impulse responses, which are iH iG 2 2 matrices. 

By examining the transform matrices of the scalar wavelet equations and multiwavelets equation (9), one 
can see that in the multiwavelet transform domain there are first and second HPF coefficients rather than one 
low-pass coefficient followed by one high-pass coefficient. Therefore, if these four coefficients are separated, 
there are four sub-bands in the transform domain. 

Fast DMWT computation for 1-D signal using critically sampling is computed using the following 
procedure: 

 Checking input dimensions: Input vector should be of length N , where N  must be power of two. 
 Constructing a 22 NN  transformation matrix W using GHM low and HPFs matrices given in 

equations (3) and (4) respectively. After substituting GHM matrix filter coefficients values, an 
NN   transformation matrix results  

 Preprocessing rows: Approximation-based row preprocessing can be computed by applying 
equations (5) and (6) to the odd and even-rows respectively of the input NN   matrix for the first 
order approximation preprocessing. For the second order approximation preprocessing, equations (5) 
and (6) are used for preprocessing odd and even-rows of the input 1N matrix P respectively.  

 Transformation of input vector which can be done by applying matrix multiplication to 
the 22 NN   constructed transformation matrix by the 1N  preprocessing input vector. 

Transformation of input vector can be done as follows:  

        TPWZ 
The inverse of the upper procedure for computing inverse fast DMWT for 1-D signal using critically 

sampling algorithm is as follows:  

 Let X be the 1N  multiwavelet transformed vector, where N  is power of 2. 

 Construct 22 NN   reconstruction matrix
TWW 2 . 

 Multiply a 22 NN   reconstruction matrix 2W with the 1N multiwavelet transformed vector. 

 Apply post-processing by using the following: 
 Compute post-processing first order approximation by: 

)373615.0(row]]/-even  previous)[11086198.0(

 row]-evennext  )[11086198.0(row]-odd  same[[row-odd 
  

)12(row]/-even same[row-even    

to the column reconstructed  1N vector matrix. 
 Compute post-processing second order approximation by applying equations: 

)28/10(row]]/-even  previous)[28/3(

row]-evennext )[88/3(row]-odd same[[row-odd 
 

row]-even same[row-even    

to the column reconstructed 1N  vector matrix P . 
Reconstruction of input transformation vector can be done as follows:        TpWz  2  

3. The Radon-based OFDM  
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Radon-based OFDM was recently proposed in [14], it was found that as a result of applying FRAT, the 
BER performance was improved significantly, especially in the existence of multi-path fading channels. Also, 
it is found that Radon-based OFDM structure is less sensitive to channel parameters variation, like maximum 
delay, path gain, and maximum Doppler shift in selective fading channels as compared with standard OFDM 
structure. 

In radon based OFDM system, FRAT mapping is used instead of quadrature amplitude modulation 
(QAM) mapping [14] as shown in Fig. 1. The other processing parts of the system remain the same as in 
conventional QAM OFDM system. It is known that fast Fourier transform based OFDM obtain the required 
orthogonality between sub-carriers from the suitability of IFFT algorithm [2, 4, 13]. Using FRAT mapping 
with the OFDM structure increases the orthogonality between sub-carriers since FRAT computation uses 
one-dimensional (1-D) IFFT algorithm. Also FRAT is designed to increase the spectral efficiency of the 
OFDM system through increasing the bit per Hertz of the mapping. Sub carriers are generated using N points 
discrete Fourier transform (DFT) and guard interval (GI) inserted at start of each symbol is used to reduce 
ISI. 

Serial to
Parallel

FRAT
Mapper 1-D

IFFT

OFDM Receiver

OFDM Transmitter

Input
Data

Add Guard
Interval

Parallel to
Serial Channel +

AWGN

Serial to
Parallel

Remove
the Guard

1-D FFTFRAT
Demapper

Parallel to
Serial

1-D Serial OFDM Signal
Pilot

Symbols

Channel
Compensation

Channel
Estimator  

Fig. 1: Serial Radon based OFDM transceiver. 

The procedure steps of using the Radon based OFDM mapping is as follows: 

Step 1: Suppose  is the serial data stream to be transmitted using OFDM modulation scheme. 

Converting from serial form to parallel form will construct a one dimensional vector containing the 
data symbols to be transmit

( )d k

( )d k
ted, 

 Tnddddkd  ......   )( 210                                                            (10) 

Where, k  and n  are the time index and the vector length respectively. 

Step 2: convert the data packet represented by the vector  from one-dimensional vector to a)(kd pp   

two dimensional matrix , where )(kD p  should be a prime number according to the matrix resize operation. 

Step 3: Take the 2-dimensional (2-D) FFT of the matrix  to obtain the matrix, . For 
simplicity it will be labeled by .  
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Step 4: Redistribute the elements of the matrix  according to the optimum ordering algorithm given in 

[23]. So, the dimensions of the resultant matrix will be 

F
( 1p p )   and will be denoted by the symbol optF . 

The two matrixes for FRAT window= 7 are given by: 
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Step 5: Take the 1D-IFFT for each column of the matrix  to obtain the matrix of Radon coefficients, optF

R : 


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                                                    (14) 

Step 6: Construct the complex matrix R  from the real matrix R  such that its dimensions will be 
 according to: 2/)1(  pp

pjpi   0,0                                              (15) 
1,,,  jijiml rjrr ,

Where, mlr ,  refers to the elements of the matrix R , while  refers to the elements of the matrix jir , R . 

Matrixes R  and R  are given by: 
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Complex matrix construction is made for a purpose of increasing bit per Hertz of mapping before 
resizing mapped data. 

Step 7: Resize the matrix R  to a one dimensional vector  of length )(kr 2/)1(  pp . 

 T)/p(p ...... r rrrkr 21210 )(                                                           (18) 

Step 8: Take the 1D-IFFT for the vector,  to obtain the sub-channel modulation. )(kr
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where  number of carriers.  
C

N

Step 9: Finally, convert the vector  to serial data symbols: . )(ks ns ......  s ss ,,,, 210

4. Proposed FRAT-OFDM System computed in DMWT- basis  
The procedure that realizes the steps of FRAT is illustrated in Fig. 2 and the block diagram of proposed 
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system is shown in Fig. 3. It represents a signal flow diagram that explains the proposed OFDM transmitter. 
At the start the input data streams are converted from serial to parallel so as to construct a one dimensional 
vector that contains the data symbols to be transmitted as given by equation (20)  

T

N
dddd ) .........  ( 221                                                           (20) 

where, 
2N

 

is the specified frame length, and N should be power of 2.  

Then the data packets which are represented by the vector  are converted from one-dimensional vector 
to an 

d
NN   2-dimensional matrix , according to the matrix resize operation. The FRAT operation is 

performed on the matrix  to obtain the matrix 
D

D R  of dimensions 12  pN . The first step in computing 

the FRAT using DMWT is the computation of the 2-D DMWT of the matrix  using discrete Multiwavelets 
Critically-Sampled (DMWTCS). The output matrix will be resized to dimensions 

D
pp   by adding zeros to 

rows and columns, where p  is the smallest prime number after N . Optimum ordering is taken over the 

prime matrix to perform optimum ordering matrix of dimensions 1 pp
2

. Then the optimum ordered 

matrix is resized by adding zeros to the columns to make its dimension 1 pN . The zeros added are like 

the zeros padded in the OFDM system, and after this step the 1-D DMWT is computed. The modifications 
made on data dimensions at the end of calculating the FRAT matrix coefficients R , are for the purpose of 
increasing the bit per Hertz of the mapping before resizing the mapped data. And it is achieved by 

constructing the complex matrix R  from the real matrix R  such that its dimensions become 
2/)1( 2  pN  according to:  
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Fig. 2: The flow diagram of the proposed FRAT-OFDM transceiver realized in DMWT- basis. 
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Fig. 3: Block Diagram of Proposed OFDM System Based on DMWT-bases FRAT 

11  ,21  , 1,,,   pjNirirr jijiml
                                        (21) 

where, mlr , , refers to the elements of the matrix R , while refers to the elements of the matrix jir , R .  

Finally mapping is done by resizing the matrix to a 1-D vector r  of length 2/)1(2  pN  as in 

equation (22). 
T

)/N(prrrr ) .........  ( 21221                                                        (22)   

And the complex valued symbols are now ready for sub-carrier modulation.  

After the FRAT based on DMWT has been done, a pilot-carrier (training sequence) is generated which is 
a bipolar sequence {±1}.The receiver will be informed about this sequence previously and the training 
sequence is inserted in parallel with data. The two sequences (data plus training) are transformed by 1-D 
IDMWT to have the vector r  in order to obtain the sub-channel modulation.  

Finally, the two sequences (training plus data) are converted to one sequence using P/S converter which 
converts the vector s  to serial data symbols  1 2 2 1  ......... N(p )/s s s  2

It is important here to point out that data mapper achieved in the conventional FFT-based OFDM by 
quadrature phase shift keying and QAM modulations is replaced by the FRAT to get the constellated data 
prior to the sub-channel modulation.  

The receiver procedure is the reversed procedure of the transmitter and from it, it can be seen how the 
data dimensions are changing throughout the blocks. At the receiver, S/P converts the received sequence to a 
parallel form then passes the packet to 1-D DMWT. After the zeros pad are removed, the signal represents 
data plus training. The training sequence is used to estimate the channel frequency response as follows:  

Nk
kSamplesTrainingdTransmitte

kSamplesTrainingceived
kH ,...,2,1 ,

)(   

)(   Re
)(                                           (23) 

The channel frequency response is used to compensate the channel effects on the data, and the estimated 
data can be found using equation (24):  

2/)1(2,...,2,1 ),( ata Re)()( Data 1   pNkkDceivedkHkEstimate Estimate
                          (24) 

The output of channel compensator is passed through the signal demapper based on inverse FRAT. 
Finally P/S converts the parallel data serial.  

5. Performance of FRAT based OFDM Transceiver 
In following sections FRAT-based OFDM transceiver is simulated, and its performance is analyzed. 

System parameters used through the simulation are sec1.0 dT , FRAT window 8×8, DMWTCS bins= 64, 

Guard interval is a Cyclic prefix approach with 26 symbols added to the frame, and Pilot-assisted channel 
estimator. The output of FRAT is (16×6), so the frame of sub carrier modulation is of length 64×2 after the 
training is inserted into to the frame and before sending it through the channel. Different types of channel 
models are taken into account during the simulation. AWGN channel is considered with several SNR values. 
Then multi-path Raleigh distributed fading channels are considered with two scenarios: flat and multi-path 
selective fading cases. Fig. 3 is the schematic block diagram used for the proposed OFDM transceiver 
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simulations. The pilot-assisted channel estimator is used here to combat the channel fading effects since it is 
an efficient method especially for the case of slow fading channels. 

5.1. The FRAT based OFDM in AWGN Environment 
A MATLAB 7.0 was used to simulate the proposed FRAT-based OFDM transceiver shown in Fig. 3. 

The simulation results of proposed FRAT-OFDM system in AWGN channel are shown in Fig. 4. From 
which it is clearly seen that DMWTCS based FRAT-OFDM has much better performance than FFT based 
FRAT-OFDM. This reflects the fact that the orthogonality of Multiwavelets based FRAT-OFDM is much 
higher than the orthogonality of FFT-OFDM. 

5.2. The FRAT-OFDM in Flat fading channel 
The same programs used for simulations in AWGN channel are used here to simulate the results in a flat 

fading channel with AWGN. In this case all frequency components in the signal are affected by a constant 
attenuation and a linear phase distortion of the channel, which has been chosen to have a Rayleigh's 
distribution. A Doppler frequency of 10 Hz is used in this simulation and the results of simulations are 
provided in Fig .5. It can be seen from Fig 5 that FRAT-OFDM using DMWTCS outperforms significantly 
the other system for this channel model. 
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Fig. 4: BER performance of FRAT-OFDM using DMWTCS and FFT in AWGN channel model 

Alternative Doppler shift frequencies are used; the values taken are 100Hz, and 500Hz. The BER 
performance verses SNR are given in Fig. 6 and Fig. 7. 
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Fig. 5: BER performance of FRAT-OFDM using DMWTCS and FFT in FFC at Max Doppler Shift =10Hz 

5.3. The FRAT-OFDM in Frequency Selective fading channel 
In this section, BER performance of FRAT-OFDM using DMWTCS and FFT are simulated in a multi-

path frequency selective Rayleigh distributed channels with AWGN. Two rays channel is assumed here with 
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a second path gain of -8dB at a maximum delay from the second path of τ

max
=0.1μsec for several values of 

SNR. 

Fig. 8 shows simulations at maximum Doppler shift, Hzf D 10max  , a symbol time sec1.0 dT , a 

maximum delay in the second path sec1.0max   . The same simulations are repeated and shown in Fig. 9 

and Fig. 10 for  and 500Hz respectively. All other parameters are kept the same as in the 

previous cases. It is clearly seen from figures that the performance of DMWTCS FRAT-OFDM is superior to 
that of FFT based FRAT-OFDM system. 
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0 5 10 15 20 25 30 35 40

10
-4

10
-3

10
-2

10
-1

10
0

B
E
R

SNR 

FRAT FFT-Basis

FRAT DMWT-Basis

 

Fig. 6: The BER performance of FRAT-OFDM using DMWTCS and FFT in FFC at Max. Doppler Shift=100Hz. 
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Fig. 7: BER performance of FRAT-OFDM using DMWTCS and FFT in FFC at Max. Doppler Shift=500Hz. 

6. Conclusions 
In this paper, the FRAT method for data mapping in OFDM system is developed and implemented, 

FRAT is computed in DMWTCS basis instead of FFT basis and the suitability for such implementation was 
verified by simulations. In AWGN, flat fading channel and selective fading channel the Multiwavelet based 
FRAT OFDM outperform the other OFDM system and offers a large improvement in SNR. As a result of 
applying the DMWTCS-FRAT the BER performance was improved significantly especially in the multi-path 
fading channels. Also it can be concluded that the DMWTCS-FRAT OFDM is less sensitive to channel 
parameters variations like maximum Doppler shift in selective fading channels as compared with the 
standard OFDM structure. Therefore, this structure can be considered as an alternative to the conventional 
OFDM. 
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Fig. 8: The BER performance of FRAT-OFDM using DMWTCS and FFT in Selective Fading Channel at Max Doppler 

Shift=10Hz. 
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Fig. 9: The BER performance of FRAT-OFDM using DMWTCS and FFT in SFC at Max Doppler Shift=100Hz. 
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Fig. 10: The BER performance of FRAT-OFDM using DMWTCS and FFT in SFC at Max Doppler Shift=500Hz. 
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