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Abstract. The eigenvalue analysis of the SIMPLE preconditioner for solving two-by-two block linear 
equations with the (1, 2)-block being the transpose of the (2, 1)-block and the (2, 2)-block being zero was 
investigated in Li and Vuik [Numer Lin. Alg. Appl., 2004, 11:511-523]. In this note, we extend their ideas by 
allowing the (1, 2)-block to be not equal to the transpose of the (2, 1)-block and investigate the relationship 
of the two different formulations spectrum of the SIMPLE preconditioned matrix by using the theory of 
matrix eigenvalue. And also the SIMPLE type methods are given. 
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1. Introduction 
In many cases, discretization and linearization of the PDEs often lead to the following large sparse linear 

algebraic system: 
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where is nonsingular, and n nA R  ,  T mB C R  with m n are of full rank, i.e., det( ) 0A  , 

rank( )=)=rank(B C m . Such systems are referred to as general saddle point problems. Saddle point systems 
of the form (1.1) appear in many applications and have attracted a lot of researches [1-6, 11-12]; especially, 
one can see [1] for a comprehensive survey. 

As is known, there exist two kinds of methods to solve the linear systems: direct methods and iterative 
methods. Direct methods are widely employed when the size of the coefficient matrix is not too large, and 
are usually regarded as robust methods. The memory and the computational requirements for solving the 
large linear systems may seriously challenge the most efficient direct solution method available today. 
Naturally, it is necessary that we make the use of iterative methods instead of direct methods to solve the 
large sparse linear systems. Meanwhile, iterative methods are easier to implement efficiently on high 
performance computers than direct methods. Currently, Krylov subspace methods [13] are considered as one 
kind of the important and efficient iterative techniques available for solving large linear systems because the 
methods are cheap to be implemented and are able to exploit the sparsity of the coefficient matrix. However, 
in fact Krylov subspace methods are not competitive without a good preconditioner. To speed up the 
convergence, it is profitable to use a good preconditioner. A lot of preconditioners are presented for solving 
systems (1.1), such as block-diagonal preconditioners (with exact Schur complement and approximate Schur 
complement) [1-2, 5-6, 11-12] and constraint preconditioners [3, 4]. For a broad overview of the numerical 
solution of saddle point systems, one can see [1]. It is known that the better the clustered spectrum of the 
preconditioner Krylov subspace iteration is,  the faster the method converges. It means that the eigenvalues 
of the preconditioned matrix play an important role in the Krylov subspace method. 

In [7-10, 15], the SIMPLE-type methods were investigated for the saddle point systems with  TC B
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The eigenvalues of the precontidioned matrices were investigated in [17-21]. Especially, in [8], the 
eigenvalue analysis is given for the SIMPLE preconditioned matrix for system (1.2), two different 
formulations spectrum of the preconditioned matrix are derived. The relationship between the two different 
formulations has been investigated by using the theory of matrix singular value decomposition. 

In this note, we extend the SIMPLE preconditioner for solving the non-symmetric saddle point system 
(1.1), and give the eigenvalue analysis of the SIMPLE preconditioned matrix. The relationship between the 
two different formulations spectrum has been investigated by using the theory of matrix eigenvalue. From 
the analysis of the following proposition, we know that our results needs a weaker condition for the matrix 

. At the same time, for the non-symmetric saddle point system (1.1), we also consider the diagonal scaling 
and the SIMPLE type methods are given. 
D

2. SIMPLE preconditioner and SIMPLE(R) iterative methods 

2.1. Spectralanalysis of the SIMPLE preconditioned matrices 
In this section, we will analyse the eigenvalue of the SIMPLE preconditioned matrix. Before the main 

results are given, we give some notions. Let ( )A  denote the set of all eigenvalues of matrix A , and assume 

that the diagonal entries of A  are not equal to zero. We define a matrix  as follows P
1,R RP M B                                                                             (2.1) 

where 
1
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,  ,  diag( ),  .
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As the reference [8], we also call the preconditioner P  as SIMPLE preconditioner. For SIMPLE 
preconditioner, we have the following result: 

Proposition 1. If the right preconditioner 1P  is defined by (2.1), then the preconditioned matrix is 

T 

A





                                  (2.2) 
1 1 1 1 1

1 ( ) ( )
.

0

I I AD BR CA I AD BR
P

I

    
    
  
 

Therefore, the spectrum of the SIMPLE preconditioned matrix T  is 
1 1 1( ) {1} ( ( ) ).T I I AD BR C                                                     (2.3). 

Proof. By simple calculation, it can be concluded that 
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Hence, the form of the spectrum of T  is described by (2.3). □ 

In fact, by multiplying with matrices 1A  and A  from the left- and right-hand side of the 

matrix 1 1( ) 1I I AD BR CA    , respectively, we get 
1 1 1 1 1 1( ( ) ) ( ( ) )I I AD BR CA I A D BR C          

1 1( ( )
                                            
1 )I D D A A BR     C

1 1



)
                                     

(I JA BR C                                                       
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)where the matrix  is the Jacobi iteration matrix of the matrix . By the above analysis, we 
have the following proposition: 

1(J D D A  A

Proposition 2. For the SIMPLE preconditioned matrixT , 

(1) 1 is an eigenvalue with multiplicity at least of m; 

(2) the remaining eigenvalues are 1 , 1,2,...,i i n  ,where i  is the i-th eigenvalue of 

,ZEx x                                                                       (2.4) 

where 
1 1, .n n n nE BR C R Z JA R        

If is non-singular, (2.4) is identical to the generalized eigenvalue problem J
1 .Ex Z x   

Next, we give another eigenvalue formulation of the preconditioned matrix , and also give the 
corresponding eigenvectors. Consider the following eigenvalue problem 

T

Tx  1 .P x x   

Note that the above equation is equivalent to the following generalized eigenvalue problem 
 ,x Px  

where   and  It can also be written as 
0
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C
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  
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  
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,
0 0

A B u uA AD B

C p pC

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                                               (2.5) 

i.e., 
1(Au Bp Au AD Bp                                                           (2.6) 

.Cu Cu                                                                        (2.7) 
We solve the above equations for two different cases. 

(1) If 1  , (2.7) is an identical equation for any . Equation (2.6) shows that u
1 1( )A D A Bp  0.   

If the matrix  is non-singular, it follows from ra1D A  1 nk( )=B m , we know that . Therefore, the 
eigenvectors corresponding to eigenvalue 1 are 

0p 

, , 1, 2,..., ,
0

i n m n
i i

u
x R u R i n 
    
 

 

where   is a basis ofn

i i
u nR . 

(2) If 1  , equations (2.6) and (2.7) show that 

1 11
( ) and 0.

1
u A AD Bp Bp Cu


    


 

We insert u  into 0Cu  , and get the following equation 

,Sp Rp  

where  is the Schur complement of the matrix . 1 m mS CA B R   

By the above analysis, the following proposition is deduced. 

Proposition 3. For the SIMPLE preconditioned matrixT , 

(1) 1 is an eigenvalue with (algebraic and geometric) multiplicity of n; 

(2) the remaining eigenvalues are defined by the generalized eigenvalue problem 
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,Sp Rp                                                                       (2.8) 

In [8], the relationship of the two different formulations spectrum are investigated by using the theory of 
matrix singular value decomposition for the symmetric saddle point systems (1.2), but for the nonsymmetric 
case, the relationship of the two different spectrum can't be resolved. Moreover, in [8], the diagonal entries of 

 must be positive. But, in this note, the diagonal entries of  are only not equal to zero. diag( )D  A D

Now, we investigate the relation between both spectral formulations for the nonsymmetric case. By 
Propositions 2 and 3, we know that the two different generalized eigenvalue problems (2.4) and (2.8) have 
been derived to describe the spectrum of . In fact the two generalized eigenvalue problems are closely 
related. In the remaind of this section, we will analyse the relation of the two different formulations spectrum. 
First, we give a lemma for later use. 

T

Lemma 1. [14, Theorem 1.3.20] Suppose that     m n n mM R and N R with m n    . Then NM  has the 
same eigenvalues as MN , counting multiplicity, together with an additional n m  eigenvalues equal to 0. 

1 1m n n n m m m n n n n m m      ( ) , ( )n n n m m m mZE Z B R C R R C Z B R     By (2.4), note that 

,

. Using Lemma 1, 
we have  

1( ) {0} ( )ZE R C    ZB  

where the eigenvalue 0 with multiplicity of n m , 1 1 1 1( ) 1R CZB R CD D A A B I R S       

}.

. By (2.8) 
1 1( ) ( ) {1 iR CZB I R S        

These relations motivate the following proposition. 

Proposition 4. For the two generalized eigenvalue problem (2.4) and (2.8), suppose that ( )i ,ZE   
1,2,...,i n , and 1( ), 1, 2,...,i R S i m    , the relationship between the two problems is that 0i   is 

an eigenvalue of (2.4) with multiplicity of n m , which can be denoted as 1 2 ...m m 0n      , and 
that 1 ,  1,  2,  ...,  i mi i     holds for the remaining  m eigenvalues. 

Remark. 1. Proposition 5 in [8], the diagonal entries of D diag( )A  are required to be positive. 

However, in this note, the diagonal entries of D  are only not equal to zero. The assumption is weaker than 
the result of [8]. Additional, the analysis of Proposition 4 is different from the analysis of [8] (using different 
tools), here, it is very simple using the theory of matrix eigenvalue. In fact, the above Propositions 1-4 can be 
regarded as the extension of the Propositions 2-5 of [8]. 

2. If , and  is strongly diagonally dominant, the SIMPLE preconditioner will be effective, 

also see [16]. In fact, D  is not necessary the diagonal entries of , in this case, the diagonal entries of  
can equal to zero. If we choose D  such that the eigenvalue of the generalized eigenvalue problem of (2.8) 
are close to unit, a Krylov subspace method such as GMRES method [13] will converge quickly. 

diag( )D A A
A A

2.2. The diagonal scaling for non-symmetric saddle point matrices 
In references [8-10], a diagonal scaling strategy is proposed for a practical implementation of the 

SIMPLE preconditioning. In this note, for non-symmetric saddle point systems (1.1), scaling the coefficient 
matrix  is also considered by (left) multiplying with the diagonal matrix 

1

1

0ˆ
0 R

D
D

D





 
  
 

 

where 
1diag( ),     diag( )   and   .RD A D R R CD    B  

After this scaling, the coefficient matrix becomes 

=  
1 1

1
.

0R

D A D B

D C

 



 
 
 

ˆA D

Hence, 
1 1 1diag( ) ,    ( ) ( )n n m m

RD D A I R R D C D D B R         1   

and 
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Define the SIMPLE preconditioner as
1 1P BM  . 

Now, the SIMPLE preconditioned matrix is 
1 1 11

1

1 1 1

0

0 0R R

D A D B A DI D B
T ABM

D C R D CA D RI

  


  

   
     

   
1 1 





R







I

 

                  
1 1 1 1

1 1 1 1 1 1

( ) 0

R R

D A I D A D B A D

D C D CD B R CA D R D

   

     

 
  

  

11 12

21 22

.
T T

T T

 
  
 

 

By doing simple calculation, it can be concluded that 
1 1 1 1 1 1 1 1

11 ( ) ( )T I I D A D BR CA D I D I AD BR CA D              
1 1 1 1 1 1

12 ( ) ( )R RT I D A D BR D D I AD BR D          
1 1 1 1 1 1

21 0R RT D CA D D CD BR CA D        
1 1 1

22 .R RT D CD BR D      

Hence, it follows that 
1 1 1 1 1 1 1( ) ( )

.
0

RI D I AD BR CA D D I AD BR D
T

I

         
  
 

                              (2.9) 

From equations (2.2) and (2.9), we find the spectra of matrices T  and T  are same. 

2.3. SIMPLE type iterative methods 
The SIMPLE-type methods as iterative methods for solving symmetric saddle point (1.2) were discussed 

in references [9, 10, 14]. In fact, the SIMPLE method can also solve nonsymmetric saddle point (1.1). It can 
be deemed to solve the system  ,  R RB y b x B y 

R R

with definition (2.1). The following iteration (SIMPLE 

method) is gained by using the splitting  RB M N  . 

1
1 (

Rk k Rx x B M b
    )kx . 

SIMPLE method 

1. Choose an initial estimate p . 

2. Solve . 1Au b Bp  

3. Solve 2pR b Cu   . 

4. Compute 1   and  p pu u D B p p       . 

5. If not converged, take p p   and go to 2. 

We can also obtain iteration 
1

1 (k k L Lx x M B b
    )kx  

by using the splitting LB  L LM N  with 

1

0
,   .

0L L

I A B
B M

CD I R

  
     





1k

 

When is known, ku 1  and  kp u  are calculated as follows: 
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SIMPLER method 

1. Solve 1
2 1(( ) )kRp b CD D A u b     . 

2. Solve 1Au b Bp   . 

3. Solve 2pR b Cu   . 

4. Compute 1
1 1  and  k p ku u D B p p p   
     . 

Note that the SIMPLER method can also be described as a classical iterative method. If 
,  ,  R R LB M B and LM  are chosen as above, then the SIMPLER method can be given by 

1 (k k Ex x P b    )kx  

where , is the block diagonal part of the matrix . 1 1 1 1
E R R L R LP B M B EB M B    L E L RM M 

It is well known that the SIMPLE(R) method often needs much iteration before an accurate solution is 
obtained. To reduce the large computation times of the SIMPLE(R) method, a Krylov subspace acceleration 
of the SIMPLE(R) method is necessary. 

3. Conclusion  
In this paper, we have discussed the SIMPLE preconditioner for the non-symmetric saddle point 

problems. We have shown the relationship of the two different formulations spectrum of the SIMPLE 
preconditioned matrices by using the theory of matrix eigenvalue. At the same time, the diagonal scaling of 
the non-symmetric matrix has been considered, and the SIMPLE(R) iterative methods are given.  
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