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Abstract. This paper investigates an interval valued economic order quantity (EOQ) problem without 
shortage. Since it is almost impossible to find an analytic method to solve the proposed model, an 
optimization algorithm is designed. First, a brief survey of the existing works on comparing and ranking any 
two interval numbers on the real line is presented. Finally, the effectiveness of the designed algorithm is 
illustrated by a numerical example. 
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1. Introduction 
 The economic order quantity (EOQ) model is first introduced by F.Harris [4]. Inventory control is an 

important field in supply chain management, since it can help companies reach the goal of ensuring delivery, 
avoiding shortages, helping sales at competitive prices and so forth. A proper control of inventory can 
significantly enhance a company's profit. To control an inventory system, one cannot ignored demand 
monitoring since inventory is partially driven by demand, and as suggested by Lau and Lau [2] in many 
cases a small change in the demand pattern may result in a large change in optimal inventory decisions. A 
manager of a company has to investigate the factors that influence demand pattern, because customers' 
purchasing behavior may be affected by factors such as selling price, inventory level, seasonality, and so on. 

A large number of academic papers (for a review, see [11]) have been published describing numerous 
variations of the basic EOQ model. The body of the research assumes that the parameters involved in the 
EOQ model, such as the demand and the purchasing cost, are crisp values or random variables. However, in 
reality, the demand and the cost of the items often change slightly from one cycle to another. 

For example, inventory carrying cost may be different in rainy season compared to summer or winter 
seasons (costs of taking proper action to prevent deteriorations of items in different seasons and also the 
labour charges in different seasons are different). Ordering cost, being dependent on the transportation 
facilities may also vary from season to season. Changes in the price of fuels, mailing charges, telephonic 
charges may also make the ordering cost fluctuating. Unit purchase cost is highly dependent on the costs of 
raw materials and labour charges, which may fluctuate over time. 

To solve the problem with such imprecise numbers, stochastic, fuzzy and fuzzy-stochastic approaches [5, 
6, 9, 10] may be used. In stochastic approach, the parameters are assumed to be random variables with 
known probability distribution. In fuzzy approach, the parameters, constraints and goals are considered as 
fuzzy sets with known membership functions. On the other hand, in fuzzy-stochastic approach, some 
parameters are viewed as fuzzy sets and others, as random variables. However, if the membership function of 
the fuzzy variable is complex, for example when a trapezoidal fuzzy number and a Gaussian fuzzy number 
coexist in a model, it is hard to obtain the membership function of the total cost. Therefore, these 
membership functions play a significant role in the method. However, in practice one may not be able to get 
exact membership function for fuzzy values and probability distribution for stochastic variable. Since precise 
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information is required, the lack of accuracy will affect the quality of the solution obtained. For these reasons, 
we have represented the imprecise number by interval numbers [3, 13]. 

Thus, the interval number theory, rather than the traditional probability theory and fuzzy set theory, is 
well suited to the inventory problem. According to the decision maker's point of view under changeable 
conditions, we may replace the real numbers by the interval valued numbers to formulate the problems more 
appropriately. 

We organize the paper as follows : In section 2, we give some basic definitions, notations and 
comparison on interval numbers. In section 3, we give the model formulation and the solution procedure. 

2. Interval number 
 An interval number proposed by Moore [13], is considered as an extension of a real number and as a 

real subset of the real line  . 

Definition 1. An interval number A
~

 is a closed interval defined by  

}.;:{=],[=
~

numbersrealallofsetthebeaxaxaaA RLRL  The numbers RL aa ,  are 

called respectively the lower and upper limits of the interval A
~

. An interval number A  alternatively 
represented in mean-width or center-radius form as   
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~
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where )(
2

1
=)

~
( RL aaAm   and )(

2

1
=)

~
( LR aaAw   are the mid-point and half-width of the interval A

~
. 

Actually, each real number can be regarded as an interval, such as, for all ,x  x  can be written as an 

interval ],[ xx , which has zero length.   

 The set of all interval numbers in   is denoted by )(I .  

2.1. Basic interval arithmetic  
 Let  11 ,=],[=

~
wmaaA RL  and )(,=],[=

~
22  IwmbbB RL  be two interval numbers, then   
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~~

];,[=
~~
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 The multiplication of an interval by a real number 0c  is defined as   
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 The difference of these two interval numbers is   
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 The product of these two distinct interval numbers is given by   
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2.2. Comparison between interval numbers   
 Let  2211 ,=],[=

~
,,=],[=

~
wmbbBwmaaA RLRL  be two interval numbers within )(I . These 

two intervals may be one of the following types:    

1.  Two intervals are completely disjoint (non-overlapping).  

2.  Two intervals are nested, (fully overlapping).  

3.  Intervals are partially overlapping.  

 A brief comparison on different interval orders is given in [1, 12]. 
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Case 1 (Disjoint subintervals):  Moore [13] defined transitive order relations over intervals as :  

 
                                                        La            Ra                   Lb            Rb  

Figure  1: Disjoint subintervals 

A
~

 is strictly less than B
~

 if and only if LR ba <  and this is denoted by BA
~

<
~

. This relation is an extension 

of `< ' on the real line. This relation seems to be strict order relation that A
~

 is smaller than B
~

. 

Case 2 (Nested subintervals) :  Let )(],[=
~

],,[=
~

 IbbBaaA RLRL  be such that RRLL abba  < . 

                                     
                                                 La             Lb                    Rb            Ra  

Figure  2: Nested subintervals 

Then B
~

 is contained in A
~

 and it is denoted by AB
~~   which is the extension of the concept of the set 

inclusion [13]. The extension of the set inclusion here only describes the condition that, B
~

 is nested in A
~

 

but it can not order A
~

 and B
~

 in terms of value. 

Let A
~

 and B
~

 be two cost intervals and minimum cost interval is to be chosen. If the decision maker 
(DM) is optimistic then he/she will prefer the interval with maximum width along with the risk of more 
uncertainty giving less importance. Again, if the DM is pessimistic then he/she will pay more attention on 
more uncertainty i.e., on the right end points of the intervals and will choose the interval with minimum 

width. The case will be reverse when A
~

 and B
~

 represent profit intervals. In this case, we define the ranking 

order of A
~

 and B
~

 as  






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~
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~
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The notation BA
~~

  represents the maximum among the interval numbers A
~

 and B
~

. Similarly  






.,

~
,

~
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optimisticisplayertheifB
BA  

The notation BA
~~

  represents the minimum among the interval numbers A
~

 and B
~

. 

Case 3 (Partially overlapping subintervals) :  The above mentioned order relations introduced by Moore 
[13] can not explain ranking between two overlapping closed intervals.  

                                 
                                             La             Lb                    Ra           Rb  

Figure  3: Partially overlapping subintervals  

We define an acceptability index to compare and order any two interval numbers on the real line in terms 
of value as in [1, 12], which are used throughout the paper.  

Definition 2   For 21 mm   and 021  ww , the value judgement index or acceptability index (AI) of the 

premise BA
~~   is defined by   

,=)
~~

(
21

12

ww

mm
BAAI


  

which is the value judgement by which A
~

 is inferior to B
~

 ( B
~

 is superior to A
~

) in terms of value. Here 
`inferior to', `superior to', are analogous to `less than', `greater than', respectively.  

Here ` ' be an extended order relation between the intervals A
~

 and B
~

 on the real line  . For any sort 
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of value judgement the AI index consistently satisfies the decision maker i.e., if )(
~

,
~

 IBA , then either 

0>)
~~

( BAAI   or 0>)
~~

( ABAI   or 0=)
~~

(=)
~~

( ABAIBAAI   holds. Thus, on the basis of 

comparative position of mean and width of intervals BA
~

,
~

 the values of )
~~

( BAAI   of the premise BA
~~   

are given by  

 1)
~~

()( BAAIi   when 21 < mm  and ,LR ba   which refer to Case 1; 

1<)
~~

(<0)( BAAIii   when 21 < mm  and ;> LR ba  

0=)
~~

()( BAAIiii   when 21 = mm .  

 Using the AI index, we have presented the ordering for closed intervals )(
~

,
~

 IBA  reflecting 
decision maker's preference as 

)(i  When 1)
~~

( BAAI   we have 21 < mm  and LR ba  . In this case, A
~

 is preferred over B
~

 (i.e., A
~

 

is less than B
~

) with acceptability index greater than or equal to 1 and so the decision maker (DM) accepts it 
with absolute satisfaction. 

)(ii  When 1<)
~~

(<0 BAAI   we have 21 < mm  and LR ba > , then A
~

 is preferred over B
~

 with 
different grades of satisfaction lying between 0 and 1, excluding 0 and 1. 

)(iii  If 0=)
~~

( BAAI   then obviously 21 = mm . Now, if 21 = ww  then there is no question of 

comparison as A
~

 is identical with B
~

. But, if ,= 21 ww   then the intervals A
~

 and B
~

 are non-inferior to each 

other, i.e., acceptability index becomes insignificant. In this case, DM has to negotiate with the widths of A
~

 

and B
~

. Let A
~

 and B
~

 be two cost intervals and minimum cost interval is to be chosen. If the DM is 
optimistic then he/she will prefer the interval with maximum width along with the risk of more uncertainty 
giving less importance. Again, if the DM is pessimistic then he/she will pay more attention on more 
uncertainty i.e., on the right end points of the intervals and will choose the interval with minimum width. The 

case will be reverse when A
~

 and B
~

 represent profit intervals.   

Ex 1. Let 25,5=[20,30]=
~
A  and 36,2=[34,38]=

~
B  be two intervals. Then 

1>1.57=
25

2536
=)

~~
(




BAAI  . Hence the DM accept the decision that ` A
~

 is less than B
~

' with full 

satisfaction.  

Ex 2.  Let 23,3=[20,26]=
~
A  and 26,2=[24,28]=

~
B  then 1<0.6=

23

2326
=)

~~
(




BAAI  . Here 

` A
~

 is less than B
~

' with grade of satisfaction 0.6.   

Ex 3.  Let 12,4=[8,16]=
~
A  and 12,6=[6,18]=

~
B  be two intervals. Here 12== 21 mm  and 

21 < ww  and so 0=)
~~

( BAAI P . Hence both the intervals are non-inferior to each other. In this case, 

from the optimistic point of view the DM will prefer the interval B
~

 instead of A
~

. Because, if A
~

 and B
~

 are 
both the profit intervals then DM will pay more attention on the highest possible profit of 18  unit ignoring 

the risk of minimum profit of 6  unit. In the same manner if A
~

 and B
~

 are cost intervals then the DM will 

pay his attention on the minimum cost of 6 units i.e., the left end points of both the cost interval A
~

 and B
~

 

and select B
~

 instead of A
~

 as 8<6 . Again, when both the intervals are profit intervals then the DM with a 

pessimistic outlook will prefer the profit interval A
~

 because his attention will be drawn to the fact that the 

minimum profit of 8 unit will never be decreased, whereas his choice of A
~

 might cost him the loss of 2 unit 

profit and this apprehension will determine from selecting the interval B
~

. Similar is the explanation when 

A
~

 and B
~

 are cost intervals.  

The above observations can be put into a compact form as follows  
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Similarly, if 21 mm   and 21 ww  , then there also exist a strict preference relation between A
~

 and B
~

. Thus 
similar observations can be put into a compact form as  
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An unified algorithm involving the dominance of interval numbers: Two interval numbers  11 ,=
~

wmA  

and  22 ,=
~

wmB  are said to be  non-dominating if 21 =)( mmi  and 21)( wwii  . The following function 
computes the minimum between two interval numbers. 

            Function )
~

,
~

(min BA  

if BA
~

=
~

 then minimum = A
~
;  

else 

  if  11 ,=
~

wmA  and  22 ,=
~

wmB  are not  

   non-dominating then 

    if )
~~

(( BA   or ))
~~

( BA P  then 

      minimum = A
~
; 

    else 

      minimum = B
~
; 

    endif; 
  else 

    if )<( 21 ww  then 

      if the decision maker is optimistic minimum = B
~
; 

          if the decision maker is pessimistic minimum = A
~
; 

          endif; 
      endif; 
   endif; 
return(minimum); 
End Function.  

Similarly, in the following we have given another function max which determines the maximum between 
two interval numbers. 

  Function )
~

,
~

(max BA  

if BA
~

=
~

 then maximum = A
~
; 

else 

  if  11 ,=
~

wmA  and  22 ,=
~

wmB  are not  

   non-dominating then 

    if )
~~

(( BA   or ))
~~

( BA P  then 

      maximum = B
~
; 

    else 

      maximum = A
~
; 

    endif; 
  else 

    if )>( 21 ww  then 

      if the decision maker is optimistic maximum = A
~
; 

      if the decision maker is pessimistic maximum = B
~
; 

    endif; 
  endif; 
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endif; 
return(maximum); 
 End Function.  

3. Model formulation and analysis 
The purpose of the EOQ model is to find the optimal order quantity of inventory items at each time such 

that the sum of the order cost and the carrying cost, i.e., total cost is minimal. In the classical EOQ model 
without shortage, an instantaneous replenishment is assumed to take place when the inventory level drops to 
zero, and the stock items are exhausted with a fixed demand rate. Moreover, the setup cost in each 
replenishment are assumed to be deterministic. But in real situations, the setup cost is usually affected by 
various uncontrollable factors and often show some fluctuation. Similarly, also for demand. In most cases, 
these are described by "lies between   and  ''. It is more reasonable, therefore, to characterize these as 
interval numbers. 

Notations : For the sake of clarity, the following notations are used throughout the paper. 

T    length of one cycle; 

],[=
~

rl ddD    demand rate; 

=Q    order quantity per cycle; 

=)(
~

TC    total cost in the plan period; 

],[=
~

111 RL CCC   the inventory carrying cost per unit item per unit time; 

],[=
~

333 RL CCC    the ordering or setup cost/ unit item. 

Assumptions : We have the following assumptions:    

 1.  No shortages are allowed.  

 2.  Lead time is zero.  

 3.  The inventory planning horizon is infinite and the inventory system involves only one item and one 
stocking point.  

  4.  Only a single order will be placed at the beginning of each and the entire lot is delivered in one batch.  

  5.  The quantities 1

~
C , 3

~
C  and D

~
 are assumed to be interval number, belongs to )(I   

A typical behavior of the EOQ lot size model with uniform demand and without shortage is depicted in 
Fig 4.  

 

Figure  4: EOQ model without shortage 

  Let us assume that an enterprize purchases an amount of Q  units of item at time 0=t . This amount 

will be depleted to meet up the customers demand. Ultimately, the stock level reaches to zero at time Tt = . 
The total demand D  in plan period ][0,T  can be expressed as,   

.= DTQ  

Q

B

Q

t = 0 t = T t = 2T 
t 
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 The inventory carrying cost for the entire cycle T  is given by   







  TQCAOBofareaC

2

1
= 11 TQC ...

2

1
= 1  

and the ordering cost for that cycle T  is 3C . Hence the total cost in the plan period ][0,T  can be expressed 

as   

....
2

1
= 13 TQCCX   

Therefore total average cost )(QC  is given by ,=)(
T

X
QC  i.e.,   

QC
Q

DC
QC .

2

1.
=)( 1

3  ....
2

1
=..

2

1
=)(, 1

3
1

3 TDC
T

C
QC

T

C
TCor                                   (2) 

By using calculus, we optimize )(QC  and we get optimum values of Q , T  and C  as   

...2.=,
.

2.
=,

.2.
= 31

*

1

3*

1

3* DCCC
DC

C
T

C

DC
Q  

Usually, in mathematical programming we deal with the real numbers which are assumed to be fixed in 
value. In usual models- Carrying cost )( 1C , set up cost )( 3C , demand )(D  are always fixed in value. But in 

real life, business cannot be properly formulated in this way due to uncertainty. Because the demand of 
customers can never be fixed, similarly the other costs also never be fixed in value. In such cases demand 
and other costs are assumed to be interval valued. But in interval oriented system we cannot use the calculus 
method for optimization. 

3.1. Interval valued EOQ model 
 Let us assume interval valued demand by ],[=

~
RL ddD , carrying cost by ],[=

~
111 RL ccC and set up 

cost by ],[=
~

333 RL ccC , where first term within the bracket denote lower limit and 2nd term within the 

bracket denote the upper limit of the variable. Replacing D  by ],[ RL dd , 1C  by ],[ 11 RL cc  in equation (2) we 
have,   

 Tddcc
T

ccTC RLRLRL ].,].[,.[
2

11
].,[=)(

~
1133                                              (3) 

Addition and other composition rules (seen in the section 2.1 in this paper) on interval numbers are used 

in this equation. But in interval oriented system we cannot use the calculus method for optimization of )(
~

TC . 

If we take ],,[= RL TTT  then the expression (3) becomes,   

 ].,].[,].[,.[
2

11
,

1
].,[=)(

~
1133 RLRLRL

LR
RL TTddcc

TT
ccTC 








                              (4) 

Since the value of )(
~

TC  is interval valued, we cannot use the calculus method for optimization. In the 
next section, we have presented a new method dependent on interval computing technique to solve the 

unconstrained optimization problems. By using multi-section method, we are to find ],,[= ***
LL TTT  for 

which )(
~

TC  have the optimal (minimum) value. 

Multi-section method and solution procedure of the system: 

Here, we use the multi-section algorithm as described by Mahato and Bhunia [14]. The idea of multi-
section comes out from the concept of multiple bisection, where more than one bisection are done at a single 
iteration cycle. The basis of this method is the comparison of intervals according to the DM's point of view. 

Let us consider a bound unconstrained optimization (maximization or minimization) problem with fixed 
coefficients as follows:   
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,),(= uxlxfz   

where ),,,(=),,,,(=),,,,(= 212121 nnn uuuullllxxxx  , n  represents the number of decision 

variables, the thj  decision variable ;jx  ),1,2,=( nj   lies in the prescribed interval ],[ jj ul . Hence, the 

search space of the above problem is as follows:   

.,1,2,=,:= njuxlxD jjj
n   

Suppose, a firm divides the sales season into   periods. Now our object is to split the accepted 
region(reduced)region (for the first time, it is the given search space or assumed if the search space is not 
given )into finite number of distinct equal subregions RRR ,,, 21   to select the subregion containing the 

best function value. 

Let ,1,2,=];,[=)( iffRf iii  be the interval valued objective function )(xf in the thi  subregion 

iR , where ii ff ,  denote the upper and lower bounds of )(xf  in iR , computed by the application of finite 

interval arithmetic. Now, comparing all the interval-valued values of objective function, )(xf  in 

),1,2,=( iRi with the help of interval order relations mentioned in earlier section, the subregion 

containing best objective function value is accepted. Again, this accepted subregion is divided into other 
smaller distinct subregions ),1,2,=( iRi  by the aforesaid process and applying the same acceptance 

criteria, we get the reduced subregion. This process is terminated after reaching the desired degree of 
accuracy and finally, we get the best value of the objective function and the corresponding values of the 
decision variables in the form of closed intervals with negligible width. 

Algorithm : 

To solve the problem (4), the optimal solution or an approximation of it has been obtained by applying 
the following algorithm.  

 Step 1: Initialize ,n  (here 1=n  for T ) ,  jl  (lower bounds) 

        and ju  (upper bounds), where .,1,2,= nj   

   Step 2 : Divide the accepted region X  into   equal subregions iR , 

        where ,1,2,= i  such that .=
1=

XRi
i



 

Step 3 : Using interval arithmetic find the interval value ],[=)( iii ffRF  

      of the objective function in the subregions iR  for .,1,2,= i  

  Step 4 : Applying pessimistic order relations (defined in the section 2.2) 

      between any two interval numbers, choose the subregion optR  

       among ),1,2,=( iRi  which has better objective function 

       value by comparing the interval values ,1,2,3,=),( iRF i  

        to each other. 

    Step 5 : Compute the widths .,1,2,3,=),(= njluw jjj   

     Step 6 : If <jw , a pre-assigned very small positive number for 

          nj ,1,2,3,=  , go to next step; otherwise go to step 3 . 

   Step 7 : Print the values of the variables and of the objective function in 
        the form of closed intervals with negligible width. 
Step 8 : Stop. 

3.2. Numerical example 
 Numerical example has been carried out to test the performance of the proposed approach described in 

this paper. To illustrate the developed model, an example with the following data has been considered. 
Consider a interval valued EOQ inventory system without shortage in which the carrying cost 
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][2.64,2.70=)ˆ( 1C  and the ordering or setup cost ],[1500,2000=)
~

( 3C  the demand quantity 

][2000,3000=
~
D . The approach for computing the best found value in each subregion of the given search 

region of the test problem has been coded in C  programming language. The solution is 0.7510=*T ,    

optimal cost ],5704.6621[3979.9770=
~*C  and the optimum ],2252.9775[1501.9850=

~*Q . 

Based on the numerical example considered above, we now study sensitivity of ** ~
,

~
CT  and *~

Q  to 

changes in the values of the system parameters ,1C  3C  and D . The sensitivity analysis is performed by 

changing each of the parameters by 25%25%,50%,   and 50% ; taking one parameter at a time and 
keeping the remaining parameters unchanged. The results are shown the following table 1. 

Table1: Effect of changes in the various parameters of the inventory model   

33.3529.2433.2950

9.2113.1121.0525

9.5111.7112.3825)
~

(

18.0422.3421.3050

35.2129.2535.2150

15.9813.4615.9825

14.0711.9114.0725)
~

(

26.3022.6726.3050

33.2929.2433.2950

15.9813.3515.9825

10.6511.7710.6525)
~

(

18.6422.4118.6450

)
~

()
~

(

%%

3

1

***














Dm

Cm

Cm

QmCmTparametertheof

inChangechangevalueMid

 
From the table 1, it is seen that 

1.  *~
C  is fairly sensitive while *T  and *~

Q  are less sensitive to changes in the value of the carrying cost 

1C .  

2.  Each of **,CT  and *Q  are moderately sensitive to changes in the value of the setup cost 3C .  

3.  *T  is less sensitive while *~
C  and *~

Q  are fairly sensitive to changes in the value of the demand rate 

D
~

.   

4. Conclusion 
 In this paper, we have presented an inventory model without shortage, where carrying cost, the ordering 

or setup cost and demand are assumed as interval numbers instead of crisp or probabilistic in nature. We 
have considered the nature of these quantities as interval numbers to make the inventory model more realistic. 
At first, we have formulated a solution procedure to optimize a general function with coefficients as interval 
valued numbers using interval arithmetic. Using multi-section technique, we have derived the solution of the 
model. The algorithm has been tested using numerical example. Lastly, to study the effect of the determined 
quantities on changes of different parameters, a sensitivity analysis is also presented. 
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