
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 5, No. 3, 2010, pp. 193-198

 

 

An Improved Bit-level Arithmetic Coding Algorithm 

Jianjun Zhang 1, + and Xingfang Ni 2 
1Dept. of Math, Shanghai University, Shanghai 200444, P.R. China 

2Shanghai Jiao Tong University, Shanghai 200030, P.R. China 

(Received March 16, 2009, accepted October 22, 2009) 

Abstract: Arithmetic coding is the most powerful lossless data compression technique that has attracted 
much attention in recent years. This paper presents a new implementation of bit-level arithmetic coding using 
integer additions and shifts. The algorithm has less computational complexity and more flexibility, and thus 
is very suitable for hardware design. We show that degradation of the proposed algorithm is bounded by 
0.2075.  
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1. Introduction 
Arithmetic coding is the most powerful lossless data compression technique that has attracted much 

attention in recent years [2-10]. It provides more flexibility and better efficiency than the celebrated Huffman 
coding. Arithmetic coding completely bypasses the traditional coding paradigm: replace an input symbol 
with a specific code. Instead, it represents a stream of input symbols by a binary number in the interval [0,1]. 
This approach totally relaxes the constraint upon Huffman coding: each symbol has to be encoded by an 
integral number of bits and by at least one bit. Thus its coding results are closer to Shannon’s entropy bound 
[1]. 

The basic arithmetic coding requires infinite precision operations that are difficult to implement on a 
fixed precision computer. Therefore, it takes about twenty years to implement a practical arithmetic coding 
program on a fixed precision computer due to Rissanen and Pasco [5][6]. They proposed a LIFO-form (last-
in-first-out) and a FIFO-form (first-in-first-out) of arithmetic coding respectively.  These illustrate that 
arithmetic coding can be implemented on a fixed length computer. Combining the advantage of the above 
two schemes, Rubin [7] proposed a general implementation of arithmetic coding by using of fixed precision 
registers. A good tutorial can be found in Witten, Neal and Cleary [8], in which an interesting carry-over 
technique to avoid bit propagation was introduced. 

One drawback of arithmetic coding is its slow speed, because arithmetic coding requires multiplications. 
Some research have been done to avoid multiplications and to improve the efficiency. Langdon and 
Rissanen[4] proposed a modified scheme for encoding a binary string by using of shift-and-add. Rissanen 
and Mohiuddin[6] proposed a multiplication-free algorithm for encoding general string. The method was 
further developed by Lei[5]. Howard and Vitter[2] described an efficient bit-level implementation that uses 
table lookup as a fast alterative to arithmetic operations. 

To further improve the implementation efficiency of arithmetic coding, we present a new bit-level 
arithmetic coding by using integer additions and shifts. The algorithm has less computational complexity and 
more flexibility, and thus is very suitable for hardware and software design. 

The paper is organized as follows. In section 2, we briefly review the bit-level arithmetic coding. In 
section 3, we propose an improved multiplication-free arithmetic coding algorithm which has less 
computational complexity. In section 4, we analyze the efficiency of the algorithm and show that the 
degradation of the proposed algorithm is bounded by 0.2075. Finally, computer simulation is given. 

2. Review of bit-level arithmetic coding 

Let )|0( sp  be the probability of 0 according to a given model, where s denotes the previous string. If 

the encoding interval for string s is  )()(),( sAsCsC  , then the bit-level arithmetic coding algorithm 
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updates )(sA  and )(sC  according to the following rule: 

)0()()1()0()()1(

)|0()()0()()0(

sAsAsAsAsCsC

spsAsAsCsC




                                        (2.1) 

In practice, )(sC  and )(sA  are represented by finite bits, and probability )|0( sp  is estimated by the 

zero occurrence frequency. That is )(/)|0()|0( snsnsp  , )(/)|1()|1( snsnsp  where )|0( sn  and 

)|1( sn  represent the count number of 0  and 1  in string s according to a given model, and 

)|1()|0()( snsnsn  . It is obvious that, arithmetic coding requires multiplications even if we only use 
integer number. This is expensive and usually has slow speed in both hardware and software implementation. 
Therefore, in practical, we should avoid to use formula )1.2( . 

Two typical multiplication-free bit-level arithmetic coding are LR algorithm (London & Rissanen) [4] 
and RM algorithm (Rissssanen & Mohiouddin) [6]. 

LR algorithm uses )(2 sk  as an approximation to probability )|0( sp  to eliminate the multiplications in 

)1.2( , where )(sk  is some integer. As the encoding proceeds,  )(sA  becomes smaller and smaller. In order 

to keep as many significant bits as possible, it multiplies )(2 sL  to )(sA  such that )(2 )( sAsL  lies in [1, 2), 

where )(sL  is some nonnegative number adjusted according to magnitude of )(sA . LR algorithm then 

updates )(sA  and )(sC  as follows:  

)0()()1()0()()1(

2)0()()0( )()(

sAsAsAsAsCsC

sAsCsC sksL


 

                                       (2.2) 

RM algorithm is a simplified form of multiplication-free multi-alphabet arithmetic coding. The 

mechanism to avoid multiplications is choosing )(sL  and )(sk  such that )(2 )( sAsL  and )(2 )( snsk  lie 

inside [0.75, 1.5) simultaneously. RM algorithm then updates )(sA  and )(sC  as follows: 

                                       )0()()1()0()()1(

)|0(2)0()()0( )()(

sAsAsAsAsCsC

snsAsCsC sksL


 

                                       (2.3) 

It is obvious that, the above algorithm can be implemented by shifts and additions. However, the 

operation of choosing )(2 sL  such that )(2 )( sAsL  lies in [1, 2], and choosing )(sL  and )(sk  such that 

)(2 )( sAsL  and )(2 )( snsk  lie inside [0.75, 1.5] simultaneously is somewhat time-consuming. On the other 
hand, in practical implementation, the inherent carry-over problem need to be considered. A wide used 
technique to avoid carry-over is bit-stuffing proposed by Rissanen [6], but this technique reduces the 
encoding efficiency in some extent. In [8], an algorithm to avoid bit-stuffing is presented, but the technique 
in the algorithm is very complicated. In [9], a very simple method to avoid carry-over was presented. 

3. An improved bit-level arithmetic coding 
Zhao et al in [9] used the similar approximation method as LR and RM algorithm. They directly choose 

integer number )(sk  such that )(2 sk  approximates )|0( sp . To deal with the carry-over problem, they 
presented a very simple and efficient technique. 

In the subsequent discussion, we use a similar method to deal with the carry-over problem. To avoid 
integer multiplication, we take a method that is easy to manipulate. The method combines the encoding and 
the carry-over technique together. The method has less computational complexity and accordingly runs 
rapidly.  

Improved arithmetic coding algorithm: 

1. Initialize C  and A ; 

2. Compute 0p  and 1p  according to a given statistical model; 

3. Input the next symbol x . If end of file, then output the content of C  and terminate; 
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4. If 10 pp  , exchange the contents of 0p  and 1p and let xx ! ; 

5. If )10( ppA  , repeat: 

a) Output the most significant bit of C ; 

b) 1,1  AC ; 

c) If CA ~ , then 1~  CA ; 

6. If 0,0 pAx  ; else 0,0 pCCpAA  . 

In the above algorithm, A  and C  can be given arbitrarily. Since the algorithm outputs the results bit by 
bit, we need to pack the bits into byte or word. In the end of encoding, we must output the content of C . The 
decoding algorithm is similar to the encoding algorithm. We only need an extra decoding variable V  of the 
same bits as C . 

Improved arithmetic decoding algorithm : 

1. Initialize C  and A ; 

2. Compute 0p  and 1p  according to the given statistical model; 

3. Set 0x ; 

4. If 10 pp  , exchange the contents of 0p  and 1p , let xx ! ; 

5. If )10( ppA  , repeat: 

a) 1,1,1  VAC ; 

b) V |= next bit to be decoded; 

c) If ,~ CA   then 1~  CA ; 

6. If 0,0 pApCV  , else xxpCCpAA !,0,0  .  

In the decoding algorithm, the parameters must be consistent with those in the encoding algorithm, and 
0V . Otherwise, the decoding algorithm will not work correctly. The length of the data to be encoded must 

be preserved, so that the decoding algorithm can terminate properly. 

The 0p  and 1p  in the improved arithmetic coding algorithm need to be computed by using of a 
statistical model. To this end, we introduce two array 0P  and 1P  of K  bits, and assign variable W  of l  
bits, which actually is a sliding window on input data. Then the statistical model is as follows. 

Statistical model: 

1. Input: x (0 or 1); 

2. ][11],[00 WPpWPp  ; 

3. If 0x , then ][0 WP ++, else ][1 WP ++; 

4. W shift left 1 bit, x|W ; 

5. Output 0p  and 1p .  

To avoid the zero probability, the initial value of 0p  and 1p  should not set to zero, but the initial value 

of W  could be any value. Using the improved arithmetic algorithm and the given statistical model, we can 
carry out the data compression efficiently. 

4. Efficiency analysis 
Following Lei [5], we consider the degradation of the improved arithmetic coding, and compare it with 

RM method. It is easy to see that the RM method is using the following modified probability model 

)|0( sp
( ) ( )2 n(0|s)L S k s

A

 

, (1| ) 1 (0 | )p s p s  , instead of the ideal model (0 | ) / ( )n s n s  and 

1 (0 | ) / ( )n s n s , while the improved arithmetic coding uses the following modified probability model 

(0 | )
(0 | )

n s
p s

A
 , (1| ) 1 (0 | )p s p s  , instead of the ideal model (0 | ) / ( )n s n s  and 1 (0 | ) / ( )n s n s . 
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The ideal average coding length l  is known to be 

)
)(

)|0(
1(log)

)(

)|0(
1(

)(

)|0(
log

)(

)|0(
22 sn

sn

sn

sn

sn

sn

sn

sn
l  . 

The actual average coding length Rl  of the RM coding algorithm is 

)
)|0(2

1(log)
)(

)|0(
1(

)|0(2
log

)(

)|0( )()(

2

)()(

2 A

sn

sn

sn

A

sn

sn

sn
l

sksLsksL

R



 , 

and the actual average coding length Il  of the improved arithmetic coding algorithm is 

)
)|0(

1(log)
)(

)|0(
1(

)|0(
log

)(

)|0(
22 A

sn

sn

sn

A

sn

sn

sn
lI  . 

Therefore the degradation of RM coding and the improved arithmetic coding is respectively: 

))
)(

)|0(

)(

)(
(

)(

)(
)

)(

)|0(
1((log)

)(

)|0(
1(

)(

)(
log

)(

)|0(
22 sn

sn

sn
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sn

s

sn

sn

sn

sn

sn

s

sn

sn
llRR 

  

and 
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)(

)|0(

)(
(

)(
)

)(

)|0(
1((log)

)(

)|0(
1(

)(
log

)(

)|0(
22 sn

sn
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sn
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sn

sn

sn

sn

sn

A

sn

sn
llII  , 

where As sksL )()(2)(  . The range of 
)(

)(

sn

s
 is [0.5, 2], and the range of 

)(sn

A
 is [1, 2].  

 

     Fig.1 Degradation of RM scheme 

Fig. 1 gives plots of R  versus 
)(

)(

sn

s
 for different 

)(

)|0(

sn

sn
, and Fig. 2 gives plots of I  versus 

)(sn

A
 for 

different 
)(

)|0(

sn

sn
. Since 5.0

)(

)|0(


sn

sn
 in the improved arithmetic coding, from the figures, we see that I  is 

always less than 0.2075, while R  may be very large in some worse cases. 
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     Fig.2 Degradation of improved arithmetic scheme 

5. Computer simulation 
In this section, the basic bit-level arithmetic coding algorithm and our proposed algorithm were tested. 

We arbitrarily select four types of test data file: C-language source file(file1), Chinese word 
document(file2), .exe file(file3) and Lena.tif file(file4). The sizes of these files are 11969, 976896, 121856 
and 262330 bytes respectively. 

Test results are listed in table 1, where we list the encoding rate which is defined as Er=8×length of 
encoded file(bytes)/ length of original file(bytes), and IA and BA represent the proposed algorithm and basic 
arithmetic coding algorithm respectively. 

Table 1 Encoding rate for different files 

 file1 file2 file3 file4 

IA 4.206 2.414 3.361 5.681 

BA 4.342 2.350 3.282 6.017 

For comparison, we also list the test results in [9] in table 2, where five types of file: C-language sources 
file(file5), Chinese word document(file6), grey image file(file7), .exe file (file8) and hybrid data file(file9) 
were tested. The sizes of these files are 27620, 72596, 262330, 54645 and 417192 bytes respectively. In table 
2, BA, ZA, RA and LA represent the basic arithmetic coding algorithm, Zhao’s algorithm [9], RM algorithm 
and LR algorithm respectively. 

Table 2 Encoding rate for different files 

 file5 file6 file7 file8 file9

BA 3.001 3.464 5.433 5.944 5.377

ZA 3.074 3.507 5.504 5.972 5.443

RA 3.198 3.595 5.574 6.053 5.513

LA 3.237 3.692 5.941 6.438 5.945

From table 1 and table 2, we see that Zhao’s algorithm, RM algorithm and LR algorithm always have 
less compression rate than the basic arithmetic coding, while our proposed algorithm sometimes has higher 
compression rate than the basic arithmetic coding. This may be due to inaccuracy probability estimation of 
the practical modal. In addition, our proposed algorithm has the least complexity and the highest speed in the 
above mentioned algorithm. 
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6. Conclusion 
In this paper, we proposed a new bit-level arithmetic coding algorithm. It has the least complexity and 

the highest speed in Zhao’s algorithm, RM algorithm, LR algorithm and the basic arithmetic coding 
algorithm. Sometimes it has higher compression rate than basic arithmetic encoding algorithm. Therefore, it 
provides an excellent compromise between good performance and low complexity. 
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