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Abstract. A cactus graph is a connected graph in which every block is either an edge or a cycle. An 
optimal algorithm is presented here to find a maximum weight 2-coloured set on cactus graphs in )(nO  time, 

where n  is the total number of vertices of the graph. The cactus graph has many applications in real life 
problems, specially in radio communication system. 

Keywords:  Design of algorithms, analysis of algorithms, 2-colour set, cactus graph. 

1. Introduction 

 Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices and m  edges, where V  

is the set of vertices and E  is the set of edges. A vertex v  is called a  cut-vertex if removal of v  and all 
edges incident to v  disconnect the graph. A  non-separable graph is a connected graph which has no cut-
vertex and a  block means a maximum non-separable sub-graph. A block is a  cyclic block or simply  cycle in 
which every vertex is of degree two. 

A  cactus graph is a connected graph in which every block is either an edge or a cycle. 

The Graph Colouring Problem (GCP) plays a central role in graph theory and it has direct applications in 
real life problems [2, 4, 22], and is related to many other problems such as timetabling [11, 23, 27], 
frequency assignment [14] etc. A K-colouring (assignment) of an undirected graph ),(= EVG , where V is 

the set of nV |=|  vertices and VVE   the set of edges, is a mapping },{1,2,: KV   that assigns 

a positive integer from },{1,2, K  (representing the colours) to each vertex. We say that a colouring is 

feasible if the end nodes of every edge in E have assigned different colours,  i.e., for all ,),( Evu   

)()( vu   . We call conflict the situation when two nodes between which an edge exists have the same 
colour associated to them. We say that a colouring is infeasible if at least one conflict occurs. Alternatively 
to the formulation as an assignment problem, the GCP can also be represented as a partitioning problem, in 
which a feasible K-colouring corresponds to a partition of the set of nodes into K sets KCCC ,,, 21   such 
that no edge exists between two nodes from the same colour class. 

The graph colouring problem is NP-complete. Hence, we need to use approximate algorithmic methods 
to obtain solutions close to the absolute minimum in a reasonable execution time. 

The Maximum Weight k-Colourable Subgraph (MWKC) problem is related to the following problem. 
The input to this problem consist of an integer number k  and an undirected graph ),(= EVG , where each 

vertex v  has a non-negative weight vw . The goal is to pick a subset VV  , such that there exists a 

colouring c  of ][VG   with k  colours, and among all such subsets, the value v
Vv

w


, vw  is maximum. This 

problem is NP-hard for general graph even for split graph [16]. 

The maximum weight k-colouring problem is same as the maximum weight k-independent set (MWKIS) 
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problem. The maximum k-independent set problem on G  is to determine k  disjoint independent sets 

kSSS ,,, 21   in G  such that kSSS  21  is maximum. The MWKIS problem is NP-complete for 

general graphs [16]. 

Many work on Colouring Problem has been done previously. Local search in large neighbour and 
iterated local search for GCP are described in [10, 1]. In [3] there are different new methods to colour the 
vertices of the graph. Vertex colouring by multistage branch and bound method is described in [7] and by 
branch and cut algorithm is described in [12]. Greedy graph colouring is used in [5]. Genetic and hybrid 
algorithm for graph colouring is applied in [13, 15]. In [22] parallel graph colouring is applied. Graph 
colouring algorithm for assignment problem in radio network is done in [8] and ant algorithm for GCP is 
described in [9]. 

The maximum weight 2-colouring problem or the maximum weight 2-independent set (MW2IS) 
problem, which is a special case of the (MWKIS) problem, is also NP-complete for general graphs [26] and 
it applications have been studied in the last decade [17, 18, 21, 26]. In [17], Hsiao et.al. have solved the two-
track assignment problem by solving the M2IS problem on circular arc graph. In [21], Lou et. al. have solved 
the maximum 2-chain problem on a given point set, which is the same as the MW2IS problem on 
permutation graph. 

Cactus graph has many applications. These graphs can be used to model physical setting where a tree 
would be inappropriate. Examples of such setting arise in telecommunications when considering feeder for 
rural, suburban and light urban regions [19] and in material handling network when automated guided 
vehicles are used in [20]. Moreover ring and bus structures are often used in local area networks. The 
combination of local area network forms a cactus graph. 

To illustrate the problem we consider a weighted cactus graph of Figure 1. The numbers in the bracket of 
each vertices represent the weights of that vertices. 

 

                   Figure  1:  A cactus graph G . 

In this paper maximum weight 2-colouring problem is considered on a weighted cactus. 

2. Computation of blocks and cutvertices of G  

As described in [25] the blocks as well as cut vertices of a graph G  can be determined by applying DFS 
technique. Using this technique we obtain all blocks and cut vertices of the cactus graph ),(= EVG . Let the 

blocks be 1B , 2B , 3B ,..., NB  and the cut vertices be 1c , 2c , Rcc ,,3   where N  is the total number of 

blocks and R  is the total number of cut vertices. 

The blocks and cut vertices of the cactus graph shown in Figure 1 are respectively )(1,2,3,4,5=1B , 

,(3,6,7,14)=2B  (6,8,9),=3B  2,13),(9,10,11,1=4B  ,(14,15,16)=5B  20,22),(16,17,21,=6B  
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24),(21,22,23,=7B  ,(20,66,34)=8B  ,(66,67,68)=9B  ,(18,17,19)=10B  28),(21,26,27,=11B  

,(27,29,30)=12B  ,(30,31,32)=13B  38,37),(31,35,36,=14B  ,(38,39,40)=15B  ,(39,41,42)=16B  

,(36,43,44)=17B  ,(44,45,46)=18B  ,(37,47,52)=19B  ),50,51,(47,48,49,=20B  ,(52,53,54)=21B  

,(54,56,57)=22B  ,(59,57,58)=23B  ,(57,61,60)=24B  (32,33)=25B , (54,55,69)=26B  

(57,64,65)=27B  (44,62,63)=28B  and 3,=1c  6,=2c  9,=3c  14,=4c  16,=5c  22,=6c  20,=7c  

66,=8c  17,=9c  21,=10c  27,=11c  30,=12c  31,=13c  38,=14c  39,=15c  36,=16c  44,=17c  

37,=18c  47,=19c  52,=20c  54,=21c  57,=22c  32=23c . 

Two blocks are said to be  adjacent if they have at least one common vertex of the graph G . It may be 
noted that the number of vertices in a block is either odd or even. If the number of vertices is even(odd) then 
we call this block as even(odd) block. 

To colour a cactus graph we construct a graph in terms of blocks and cutvertics and we refer the graph as 
block-cutvertex graph. The representation is described in the next section. 

3. Representation of block-cutvertex graph 

In this section, we determine the number of vertices in each block. Let BO  and BE  be the sets of all 
odd and even blocks respectively. 

Using blocks of the graph G  we define an intermediate graph ),(= EVG   where 

},,,{= 21 NBBBV   and NjijiBBE ji ,1,2,=,,=:),{(=  , iB  and jB  are adjacent blocks }. From 

G  we construct another graph G   where 

),(= EVG   where BOV =  and ,,,=:),{(= BOBBjiBBE jiji   iB  and jB  are adjacent 

blocks }. 

The graph G  for the graph G  of Figure 1 is shown in Figure 2 and G   is shown in Figure 3. 

Here it is evident that edges between two adjacent blocks of the graph G  or G   are nothing but the 
common cutvertex between them. The graph G   is obtained from G  by deleting the even blocks and edges 
incident on those blocks. 

 

Figure  2:  The intermediate graph G  obtained from the graph of Figure-1.  



Kalyani Das, et al: An Optimal Algorithm to Find a Maximum Weight 2-Coloured Set on Cactus Graphs 
 

JIC email for contribution: editor@jic.org.uk 

214

 

 Figure  3:  The graph G   obtained from the graph G  of Figure-2.  

Properties of G  and G  : 

The properties of the graph G  are described below. 

Lemma 1  In G  and G   there exists no cycle of length more than three.  

Proof: We prove it by contradiction. Suppose there exist a cycle of length 4 in G  or G   as shown in 
Figure- 4(a). Here the vertices 1B  and 3B  are adjacent to 2B . Again vertex 4B  is adjacent to both the 

vertices 1B  and 3B . The representation of these blocks in original graph is G  shown in Figure 4(b) which 

shows that the properties of cactus graph is not satisfied. Hence our assumption that there exist a cycle of 
length 4 is not true. Similarly, it can be shown that cycles of length more than four in G  or G   also do not 
exist. But, for the cycle of length 3 as in 4(c) in G  or G  , the representation of this in G  satisfies the 
property of cactus graph as shown in 4(d). Hence the proof.   

 

 Figure  4:  Illustration of lemma-1. 

 

                             Figure  5:  Illustration of lemma-2. 
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Lemma 2  Let there be a cycle of length three in G  and G  . The vertices corresponding to the edges of 
this cycle represent the same cutvertex in G .  

Proof: Let there be a cycle of length three in G  or G   as in Figure-4(a). By definition of G  and G   the 
corresponding subgraph in G  is drawn which shows in Figure-5(b). Obviously, this is a cactus graph. Again 
suppose three blocks of G  do not have same cutvertex in common as in Figure-5(c) and its representation in 
G  and G   is shown in Figure-5(d) which shows that they do not form a cycle.   

Lemma 3  Three or more vertices of G  and G   form a clique provided the blocks corresponding to the 
vertices have a common cutvertex in G .  

Proof: It is obvious from the property of cactus graph that two blocks have only one vertex in common. 
Hence there is only one edge between two vertices of G  and G   as we define the edge of G  and G   is 
the cutverx of G . Again when there exist three or more blocks with same common cutvertex in G  then the 
vertices corresponding to these blocks in G  and G   are connected by an edge with each other. As these 
vertices are connnected each other by an edge they form a clique. Hence the proof.   

Definition: 

Clique: A  clique Q  in G  or G   is defined as the subgraph of G  and G   whose all vertices are 
connected by an edge with each other. 

Adjacent Clique: Two cliques are said to be  adjacent cliques if they have one common vertex in G  or 
G  .  

Lemma 4  Intersection of two adjacent cliques produce one vertex in G  or G   but the intersection of 
blocks corresponding to the vertices of different cliques do not produce any vertex in G .  

Proof: From the definition of adjacent clique the first part is proved. 

For the second part, suppose intersection of two cliques produce a vertex in G . This imply that common 
vertex of G  and G    i.e, corresponding block in G  of that vertex contain only one vertex of G . But from 
the property of cactus graph it is clear that every block is either an edge or a cycle. 

Again, if two cliques have a common vertex in G , all the blocks corresponding to the vertices of these 
two cliques contain that vertex  i.e, all vertices of these two cliques belongs to same clique by definition. 
Thus our assumption is wrong. Hence the proof.   

Lemma 5  The graph G   may be connected or disconnected graph. 
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Figure  6:  Different form of the graph G  .  

4. Representation of G   in terms of vertex weight and edge weight 

Let ii Bv   be the vertex whose weight is minimum and let )(= ii vwta  and the weight of edge between 

two vertices iB  and jB  in G  and G   is jiw , . We sometimes refer ia  is the weight of the block iB . 

We denote the cutvertex of iB  and jB  as i
jv  which is a member of G . 

The graph G   or the connected components of G   can be classified in the following ways. 

Type-1: Some vertices in G   occurs as isolated vertices or paths. These are shown in the Figure-6(a). 

Type-2: Some vertices in G   are of degree more than two and they do not form a cycles or cliques. This 
situation occurs when there exist more than two cutvertices in the blocks of G . In this case, G   looks like a 
tree shown in Figure-6(b). 

Type-3: Some vertices in G   form cycles or cliques. This case occurs when there exist one cutvertex 
between three or more blocks of G . This is shown in the Figure-6(c). 

Type-4: All the above types occur in this form. This is shown in Figure-6(d). 

Lemma 6   If kB  is an even block containing k  vertices, then all the vertices of kB  can be coloured with 

two colours.  

Proof: In an even block, the number of vertices are even. Let two colours be denoted by ` 0 ' and `1'. If we 
colour alternate vertices with colour ` 0 ' and rest vertices with colour `1' it is seen that the set of vertices 
with colour ` 0 ' and set of vertices of colour `1' are disjoint and the union of these two sets gives all the 
vertices of kB . Hence the proof.   

Lemma 7  If kB  is an odd block containing k  vertices, the vertices of kB  can be coloured with three 

colours.  

Proof: At first we remove one vertex, say v  from the cycle kB . Then }{= vBB kk   becomes even block 

and hence we can colour all the vertices of kB  by ` 0 ' and `1'. Lastly we colour v  by using the colour ` 2 '. 

Hence the proof.  

From these lemmas it is evident that to colour all the vertices of an odd block with two colours, one 
vertex remain colourless. 
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5. Formation of a tree BQT  with the vertices of G   
There are three different types of subgraph which aries in G  . We consider the general case which 

arises in type-4 of G  . 

In this subgraph we denote the cliques as ,,, 321 QQQ  and divide the vertices of a cliques in two ways: 

(a)  Free Vertices: Vertices which belongs to one clique are called  free vertices. 

(b)  Non-free Vertices: Vertices which belongs to more than one cliques are called  non-free vertices 

Let ji
i
jkQ wvwtW ,=)(=  where i

jv  is the cutvertex joining to the blocks iB  and jB  and kji QBB , . 

Introduce a function F  so that ,=)(,=)( jjii vaFvaF  where ii Bv   and )({ iaFwt   i.e, 

ii avwt =)( . Also i
jij vwF =)( , GBBv ji

i
j =  and )}()({=)( jiji aFaFaaF    i.e, },{ ji vv . 

For each clique we also define j
j

R

kQ aW = , ja  is the weight of kj QB  , jB 's are the free vertices of 

kQ  and )( jaF  are unique. If all )( jaF  are not unique,  i.e, if they represent same vetex in G  then 

lj
ijj

j
j

aaa 
,

= , where i  is the suffixes for which )( iaF  represent the same vertex and l  is one of i  . 

Now we construct a tree BQT  whose nodes are the vertices of G   (not forming cliques) and the cliques 

if they exists. First take any vertex 1B (say), of G   as root of the tree BQT . Find the cliques which contain 

0B  and adjacent vertices which does not include in any clique containing 0B . Place them in level one and 

mark them. Thereafter find the vertices which are adjacent to the vertices of level one or contained in the 
cliques of level one. Place them in level two and marked. Applying same procedure we get the tree. 

The weight of the edge between two nodes iB  and jB  is jiw ,  and no weight is given to the edges 

between a clique kQ  and its children nodes but weight R

kQW  is given to the edge between the clique kQ  and 

its parent node. The weight of every node are either ja  for jB  and 
kQW  for kQ . 

 

Figure  7:  The Tree BQT  of G    
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The tree BQT  for the graph G   in Figure-6(d) is shown in Figure-7. 

In the tree BQT  the parent of a node iB  is denoted by )( iBPr  and child of iB  is denoted by )( iBCh . 

Now we find a sequence of nodes iB  so that before considering a node its children nodes are considered. 

This sequence of nodes are obtained from the following section. 

Euler Tour 
Euler tour produces an array of nodes. The tour proceeds with a visit to the root and there after visits to 

the children of the root one by one from left to right returning each time to the root using tree edges in both 
directions. Algorithm GEN-COMP-NEXT of Chen et al. [6] implements this Euler tour on a tree starting 
from the root. The input to the algorithm is the tree represented by a `parent of' relation with explicit ordering 
of the children. The output of the algorithm is the tour starting from the root of the tree and ending also at the 
root. The tour is represented by an array 1)2:(1 NS  that stores information connected to the visits during 

the tour. The element )(iS  of the array S  is a record consisting of two fields, one of which, denoted by 

nodeiS ).( , is the node visited during the  ith visit while the other, denoted by subscriptiS ).(  is the number 

of times the node nodeiS ).(  is visited during the first i  visits of the tour. Two fields of an element of S  are 

written together using the notation subscriptnode)( . Also, we consider an array )( jf  and )(kf  which stores 

the total number of occurrence of the block jB  and kQ , ,,,,= lkjij  and 1,2,=k , so that 

Nkj |=|   in the array 1,21,2,3,=),( NiiS  . Thus )( jf  and )(kf  represents the number of visits of 

the block jB  and kQ  in the Euler tour,  i.e., )( jf  and )(kf  is the maximum subscript of jB  and kQ  in 

the array )(iS . 

The array S  for the graph of Figure 7  is shown in Table 1.  

Table  1:  The sequence of nodes obtained from Euler tour. 

 
For each j  and k , ,,,,= lkjij  and 1,2,=k , )()( jfjB  and )()( kfkQ  occurs only once in the array 

)(iS  and before )()( jfjB  and )()( kfkQ  all of 1)(21 )(,,)(,)( jfjjj BBB   and ,,)(,)( 21 kk QQ  1)()( kfkQ  

occur in order of increasing subscripts of jB  and kQ . 

The sequence of nodes obtained from the Euler Tour is ,,,,,,,,,,,, 61 eqkopmnjil BQBBBBBBBBBQ  

tswhd BQBQBQBQB ,,,,,,,, 2435 . 

The order of jB 's in this sequence is 

tswhdeqkopmnjil BBBBBBBBBBBBBBB ,,,,,,,,,,,,,, . 

The following important lemma is proved in [24]. 

Lemma 8  If 1=).( subscriptiS  and 1=1).(  subscriptiS , then nodeiS ).(  is a leaf node of the tree.  

Find all the )( jBCh  and )( kQCh  for rj ,1,2,=   and Nrrk ,2,1,=   from the tree BQT . 
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6. Method to find a set of vertices with minimum weight which remain 
colourless 

 In this section we find the cumulative weight of each vertex jB . We denote them as 

jBW  and 

jBW  

where 


jBW  represents the weight gained from its children node including the weight of jB  and 

jBW  represents 

the weight gained from its children node excluding the weight of jB . 

6.1. Finding minimum weight vertices from a leaf node 
For a leaf node jB , jjB aW =  and 0=

jBW  

Also }{=)(=)( jjiB vaFWF   and  =)(
iBWF . 

6.2. Finding minimum weight vertices from interior node 
 For an interior node jB  find the children of it. They may be cliques or vertices of G  . 

Case-1: Suppose they are vertices of G   say, ,,, mlk BBB . Therefore 

rBW , 

rBW  and also )( 

rBWF , 

)( 

rBWF  for ,,,= mlkr  are known. 

Here )),,(min(min= ,




 
pB

rp
jrrBrjrBjrB

rjB WwWaaWaWW , ,,,= mlkp  

and   rB
r

jB WW = .  

Also find )( 

jBWF  and )( 

jBWF  which makes the 

jBW  and 

jBW  minimum. 

Case-2: Suppose the children of jB  are cliques of G   say, ,,, zyx QQQ . Here 

,,,=,),(, zyxkQBQChW kskkQ   are all known. Also ,=,= )()(
  sBkQChsBkQCh WWWW  

)( ks QChB  , are known. 

Here 

),(min{min)},(min),,(min{min{min=
,

)()()( lQs

lQsBjs
lQCh

kl
kQ

R

kQjkQChs

kQsB
kQkQCh

kjB WaWWWaWaWWW 










 
and )},(min),,(min{min= )(

,
)( kQ

R

kQkQChkQs

kQsBjs
lQCh

kjB WWWWaWW  



   

Also find )( 

jBWF  and )( 

jBWF  which makes the 

jBW  and 

jBW  minimum. 

Case-3: Suppose some of the children of jB  are cliques and some are vertices of G   as in Case-2 and Case-

1. In this case 


jBW = min { 

jBW  of Case-1+ 

jBW  of Case-2, 

jBW  of Case-2+ 

jBW  of Case-1} 

and 

jBW = { 

jBW  of Case-1+ 

jBW  of Case-2}. Also find )( 

jBWF  and )( 

jBWF  which makes the 

jBW  

and 

jBW  minimum. 

Lemma 9  Maximum weighted 2-colour set from two adjacent blocks iB  and jB  is obtained from the rest 

vertices other than the vertices },{ ji vv  or i
jv .  

Proof: For two adjacent blocks iB  and jB  suppose iB  is the root and jB  is the leaf node. For the leaf node 
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jB  we have from Section-6.2 jiB aW =  and 0=

iBW . Also }{=)(=)( jjiB vaFWV   and )( 

iBWV =  . 

When we consider iB  its child node is jB  and },,{min= ijjBjijBijBiB wWaaWaWW   which is 

},{min ijji waa  . Also we know that jjii vaFvaF =)(,=)(  and i
jij vwF =)( . Hence rejection of the 

vertices },{ ji vv  or i
jv  produces the rest vertices give maximum weight.   

Lemma 10  Maximum weighted 2-colour set from three blocks iB , jB  and kB  lying on a path is obtained 

from the rest vertices other than the vertices },,{ kji vvv  or },{ k
i
j vv  or },{ j

ki vv .  

Proof: The proof is similar to Lemma-9. 

7. Algorithm and its Complexity 
 In this section we present the proposed algorithm MW2COL to compute the 2-colour set on cactus 

graphs. The time and space complexities are also computed here. The proof of correctness of the algorithm is 
also presented in this section. 

 

 
Lemma 11  The weight of 2-colour set obtained from the algorithm COLMW 2  is maximum.  

Proof: Here the odd blocks are considered only to delete some vertices from these blocks because of 
Lemma-6 and Lemma-7.The algorithm COLMW 2  describe a method for finding the set of those vertices 
with minimum total weight so that deletion of that set from the original graph give the maximum weight in 
rest vertices. Therefore the 2-colour set obtained from these vertices is maximum weighted 2-colour set.   

Theorem 1  The 2-colour set obtained from the algorithm COLMW 2  is computed in )(nO  time.  

Proof: The blocks and cutvertices of any graph can be computed in )( nmO   time [25]. For the cactus 

graph )(= nOm , hence Step 1 of Algorithm COLMW 2  takes )(nO  time. Also formation of G  and G   
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take )(nO  time. Hence Step 2 can be computed in )(nO  time. In Step 3, the representation of G   in term 

of edge and vertex weight obviosly takes )(nO  time. The construcction of tree BQT  and finding children of 

each node and finding sequence of nodes using Euler Tour take )(nO  time. Hence Step 4 and Step 5 take 

)(nO  time. Step 6 can be perform by comparing )( jf  with 1 for nrrj <,,1,2,=  , so this step takes 

only )(nO  time. Deletion of the set of vertices 1V  from G  and giving colour to the rest vertices obviously 

take )(nO  time. Hence the complexity of the algorithm COLMW 2  can be computed in )(nO .    

8. Illustration 
 The components of G   is presented as tree in the Figure-7. 

 

 Figure  8:  Verification of the method on the components of G  .  

 Here 2=1a , 1=3a , 1=4a , 1=5a , 2=6a , 1=7a , 2=8a , 2=9a , 1=10a , 2=12a , 4=13a , 

1=14a , 4=15a , 3=16a , 2=17a , 3=18a , 3=19a , 2=20a , 3=21a , 1=22a , 1=23a , 1=24a , 1=26a , 

1=27a , 2=28a . 

and 3=1v , 8=3v , 12=4v , 14=5v , 22=6v , 25=7v , 34=8v , 67=9v , 19=10v , 27=12v , 31=13v , 

38=14v , 38=15v , 41=16v , 43=17v , 45=18v , 52=19v , 48=20v , 52=21v , 57=22v , 57=23v , 

57=24v , 69=26v , 57=27v , 62=28v . 

The cycles ),,(= 2818171 BBBQ , ),,(= 2221262 BBBQ , ),,,(= 272423223 BBBBQ . Free vertices of 1Q  are 

2818 , BB , 2Q  are 26B  and 3Q  are ,,, 272423 BBB  so that 5== 28181
aaW R

Q  , 1== 262
aW R

Q , 273
= aW R

Q  or 

23a  or 1=24a  as 242327 ,, vvv  represent the same vertex in G . 

Also 3=)(= 33,4 cww , 3=)(= 55,6 cww , 2=)(= 66,7 cww , 5=)(= 96,10 cww , 3=)(= 76,8 cww , 

3=)(= 88,9 cww , 5=2)(= 112,13 cww , 4=)(= 1313,14 cww , 1=)(= 1414,15 cww , 4=)(= 1515,16 cww , 

3=)(= 1614,17 cww , 4=)(= 1814,19 cww , 5=)(= 1919,20 cww , 3=)(= 2019,21 cww , 5=)(= 171
cwWQ , 

6=)(= 212
cwWQ , 1=)(= 223

cwWQ . 

and 66,==20,==17,==22,==16,==9,== 8
8
97

8
69

10
66

7
65

5
63

3
4 cvcvcvcvcvcv  

12 13 14 15 14 17 14
13 12 14 13 15 14 16 15 17 16 18 17 19 18

19 19 21 22
20 19 21 20 22 21 23 22

= = 30, = = 31, = = 38, = = 39, = = 36, = = 44, = = 37,

= = 47, = = 52, = = 54, = = 57.

v c v c v c v c v c v c v c

v c v c v c v c
 

Here the sequence of nodes obtained from Euler tour from Figure-7(a) is 1B , from Figure-7(b) is 34 , BB , 
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from Figure-7(c) is ,,, 895 BBB  ,7B  610 , BB , and from Figure-7(d) is ,,,, 16171312 BBBB  ,,, 212215 BBB  

141920 ,, BBB . 

Here we find 

1BW + 

4BW + 

6BW + 

14BW  and coreesponding vertices. 

For the first component 2== 11
aWB

  and {3}=}{=)( 11
vWF B

  

For the second component 1== 33
aWB

 , 0=
3


BW  and },{=)( 33

vWF B
  }{=)(

3


BWF . Now the child 

of 4B  is 3B . Thus ),,(min= 3,43433434
wWaaWaWW BBBB    

 i.e, 2=3)1,011,0(1min  . Here {8,12}=},{=)( 434
vvWF B

  

Similarly from the third component 7=
6


BW  and 14}{22,19,66,=},,,{=)( 5

8
910

7
66

vvvvWF B
  

and fourth component 21=
14


BW  and 38,{30,44,41,=},,,,,,,{=)( 19

21262022
14
151617

12
1314

vvvcvvcvWF B
  

2}.57,48,69,5  

Thus 31=21712=
14641

 
BBBB WWWW  

and ,52}8,48,57,6930,44,41,3,19,66,14,{3,8,12,22=)(
14631

  BBBB WWWWF  

9. Minimum weight feedback vertex set for cactus graphs 

For a finite graph ),(= EVGG , a set S  is  feedback vertex set if and only if the graph )( SVG   has 
no cycles. The minimum weight feedback vertex set problem is to find a feedback vertex set such that the 
sum of weights of the vertices in this set is minimum among all such sets. 

To find the minimum weight feedback vertex set S  we have to select either the minimum weight vertex 
of each cycle or the cutvertex for two or more cycles as in 2-colour set problem. The only difference is in 
previous one we consider only odd blocks where as in this problem we consider both even and odd blocks 
except the edge blocks. 

Thus we obtain the graph G   from G  by deleting only vertices corresponding to the edge blocks and 
edges incident on that vertices. All properties of G  and G   thus remain unchanged. 

Using the same process we form a tree from G  , and applying the Euler tour on that tree and we get a 
sequence of nodes to consider one by one. Also applying the same procedure for each node we find the 
minimum weight as well as the set of vertices whose deletion from the graph G  makes the graph cycle free. 
Thus we obtain the minimum feedback vertex set S . 
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