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Abstract. In this paper, we improve the disc separation of the Schur complement of strictly diagonally
dominant matrices presented in Liu [SIAM. J. Matrix Anal. Appl., 27 (2005): 665-674]. As applications, we
present some new bounds for determinants of original matrices and estimations for eigenvalues of Schur
complement. By theoretical analysis, we improve the bounds of determinants established in Huang [Comput.
Math. Appl., 50 (2005): 1677-1684].
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1. Introduction

For localization of eigenvalues and estimations of determinants, many researches have been proposed,
e.g., [1-5]. Recently Liu [6] discussed the diagonally dominant degree of the Schur complement of strictly
diagonally dominant matrices and presented the localization for eigenvalues of the Schur complement and
some bounds for determinants of the strictly diagonally dominant matrices. Huang [7] estimated the bounds
for determinants of diagonally dominant matrices, general H -matrices and certain not diagonally dominant
matrices. In this paper, we improve the diagonally dominant degree of the Schur complement of diagonally
dominant matrices in [6]. Further, we obtain new bounds for determinants of diagonally dominant matrices
and the estimations of eigenvalues of the Schur complement, these results improve the estimations of [6,7].

Let AeC™ be astrictly diagonally (row) dominant matrix (SD,,), if and only if

n

&, [>P(A), R(A)= > |a, |(abbreviated B), ¥i=12,---n. (1)
j=L, j=i
Let AeC™ be astrictly doubly diagonally (row) dominant matrix (SDD, ), if and only if
If AeSDD,, but A¢SD,, then, by (2), there exists a unique i, such that
&, ;, <P, (A). ®

For A=(a;) and B=(b;) eC™", we write A>B, if a; >b; for all i, j. A real nxn matrix A is
called an M -matrix (M, ) if A=sl —B, where s>0,B>0 and s> p(B), p(B) is the spectral radius
of B.

Suppose AeC™", A be called an H -matrix (H,) if u(A)eM
#(A) = (1) be defined by

where, the comparison matrix

n>
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_|aij|,i¢ja_ .
M = .. IL,J=12,--n.
|aij |9| =1

Let X" denote the transpose of the vector X, and |, denote the nxn identity matrix. Let AeC™,

and N={L2,---,n}. If « < N, || equals the cardinality of ¢ . For nonempty index sets a, 5 < N, we
denote by A(e, ) the submatrix of A lying in the rows indicated by « and the columns indicated by f.

The submatrix A(c,a) be abbreviated to A(er). Let @ = N and a° = N —a, both arranged in increasing
order. Then

Ala=A/Aa)=Ac®)-Al’,a)[A(a)] " Ala,a®)
be called the Schur complement with respect to A(ex).
Lemma 1.1 (See [8]). Let Ae M, . Then there exists a positive diagonal matrix D such that AD € SD,, .
Lemma 1.2. (See [12]). Let AeSD_,SDD,. Then u(A)e M, , AeH..
Lemma 1.3 (See [9]). Let AcC™, BeM,.If u(A)>B,then AcH, and B> A" >0.
Remark 1.1. From Lemma 1.3, we obtain immediately that
AcH, = [u(A]* > A™.
Lemma 1.4 (See [10]). Let Ae SD, and m be a proper subset of n. Then
A/meSD

n—{mj*

Lemma 1.5 (See [11]). Let AeC™". A isan H matrix if the following inequality be hold

P .
| & |>Z|ait|+,u2|ait|_ta VieN, (4)
t‘zzli teN, |att |

where

> lay|

teN;

, | max —<1 if R=#0,VjeN,,
Oglu: 1<w<k PJ__ Z_lajtlﬁt,\
teN,,t=]j
1 else if HjeNz,FSJ:O,
A A P .
Pt:Z|ait|+Z|ait|_t> VieN,
teNy teN, ‘alt|

t=l
N2 {ieN[0<|a, [<P(A}N,—{icN|a,[>P(A}

2. Disc separation of the Schur complements of SD, and SDD,

In this section, by discussing the criteria of H,, we improve the diagonally dominant degree of the
Schur complement of SD, and SDD,, in [6].

Lemma 2.1. Let AeSD, (or SDD,), a ={i,,i,,---i,} be a proper subset of N and a“=N-«
={J5 Jp»» Ji} kK+I=n.Forany j, €a®, denote
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X_| ajtil | _| ajtik |
|
-2 13, |
_ =1
B, = ’
HUIA()]
|
_Z| a‘ikju |
u=1
(i) For AeSD,, then B, € H\aw if
> L Sa | ®
X > g max —= a. |, 5
lgwgk|ai,,,,iw ) Iy
where
|
2la |
5 | max y=L - <Lif P #0,
OS 2 ) Ko< Piu @
“ |3, |—max~, 2 lal
T v=LV£®
2 elseif p, =0.
(i) For AeSDD,, and i, € o be such as in (3), then B, € H\aw if
N P,
Xz|ay, [+ max. 2 1. Z 3, )
< 0 | ol |Ivea—{lo}

where
|

Dla 1+l |
maX v=1 = <:L|fPI ;éo’
O<p2qb=ta, |- max o 2, 13
M o ivea—ig }

VE®
1 elseif p, =0.

>

Proof. Consider the following two cases:

M: N, ={j:N, =c;

(ii): N, ={jt> io}a N, =c _{io}-

According to Lemma 1.5, we obtain inequalities (5) and (6). Further, by Lemma 1.2,

Bjt = ’u(Blt) € M|a°\’

then det B, >0. The equality case follows from a continuity argument (with x+¢ in B, and letting
e—>0").

Liu [6] defined the following o;

18y, R (A) &
; =mnN——-
U lIsvsk ’a

(@)
In this paper, for the simplicity, we let

(@) If AeSD,, then
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oy = [1 ﬂ@%la JZI

(b) If AeSDD,, but A¢SD,_, then

P
1- 4 max — a, |
[ ﬂ|ea {|0}|a |Jiu6az_{i0}| Ity |

For the convenience of comparison, we give some results of [6]:
Theorem 2.1 [6, Theorem 1]. Let AeSD,, a={i,i,,--»i}< N, a°=N-a={j, ], ik
k+l=s, A/a=(a,), o, bedefinedasin (7). Then

étt|_Pt(A/a) 2| ajrj[ |_Pj‘(A)+a)j[ 2| aj‘j[ |_Pj[(A) >0

®)

©)

and
|au| +R(A/ @) Sla;; [+P (A)-o; <|a;; [+P; (A).
Corollary 2.1 [6, Corollary 1]. Let AeSD, and take o ={L 2, ---,n—l}. Then

max ———= R(A P.(A).

nn|_ | |

la,, |—max (|)P(A)<|A/a|<|a

1<i<n-1 |
Theorem 2.2 [6, Theorem 2]. Let Ae SDD,,, and i,,1<i, <n, be such as in (3). Then for any index set «
containing i,, writing & ={i,,i,,-- i L a" =N-a={j, j,,--- jLKk+I=n,and A/a=(a,). Then

‘att|_Pt(A/a) Z’ aj‘jt |_Pj[(A)+(1_ » JZ‘ ity

| |0|0

P, (A)

_| ajtjt |_ |

lolo

and

R(A) )&
|§tt|+Pt(A/a) < ajtjt |+Pjt(A)_[l_ - JZ| ajtiv |

la, | )V
P, (A)
+ 0
|3y, |
In this paper, we replace o, in[6]by @; and @, by the similar way to the proof of Theorem 1 and 2
in [6], then we can obtain the similar results as Theorem 2.1, 2.2 and Corollary 2.1.
Theorem 2.3. Let AeSD,, a ={i,,i,,~i =N, a*=N—-a={j, j,,---, jLk+1=5. @, be defined
asin (8), A/a=(ay). Then

én|—Pt(A/a) 2| ajrj[ |_Pj‘(A)+C(A)j‘ Z| aj‘jl |_Pj[(A) >0

lolo

P, (A).

_l ajzj: ’

and
|ae|+R(A/ @) Sla;; [+P (A -a; <la;; |+P; (A).

Corollary 2.2. Let AeSD, and take « —{LZ,---,n—l}. Then
(a2 max D

1<i<n-1 ’a

P (A) <|A/al<|a, |- max (A

1<i<n-1 ’a

P.(A).

Theorem 2.4. Let AeSDD,, and iy,1<1i, <n, be such as in (3). Then for any index set & containing i,
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writing & ={i,,i,,...i La*=N—-a={j, j,,....  Lk+1=n, &; is defined as in (9) and A/ = (&) -
Then
lau|-R(A/a)2a;; |-P, (A +a;=la;; |-P,(A)>0
and
|ac|+R(A/a) Sla;; [+P, (A)-a; <|a;; |+P, (A).
Proof. Since AeSDD,, by (9), we have

P
;= z |a |+|ah|o|_|ajti0|_,u max - Z |ajtiu|

iyea—{iy } hea {Io}l al iy || ca—{ip }

R
- Z | aJ[ - J'o _’u max : Z | ajtiu |

iyea o }’ a'| iy || ca—{ip }
Further, according to Lemma 2.1, by the similar way to the proof of Theorem 2 in [6], we can complete the
proof of Theorem 2.4.

Remark 2.1. By comparison, we obtain that ¢ < o, and @j, < @ - Thus, we improve Theorem 1, 2 and
Corollary 2 in [6].

3. Bounds for determinants of SD, and SDD,

For the convenience of comparison, we use the same denotes as in [6]. Let {J;,J2, ... Jn}be a
rearrangement of the elements in N={L2---,n}. We Denote o, ={j.}, & ={i,» ). 1}

w0 ={ s oo =N . Then with o, ,, —, , ={j,}, k=12,--,n, a, =, and
ij [A(an—k+l)] = z | Aju |

Uea

Let y represent any rearrangement {j;, J,,---, j,} of the elements in N with o, ,,...,, .

2w

ILl max ~ m X Piu max P [A(an—k+1)] P| [A(an k+1)]

. . a5 e e
In this section, we use  Y<én« and et} bl g replace Uson« " and Pl jn
[6, Theorem 3 and Theorem 4], respectively. Then we can obtain the following results.

Theorem 3.1. Let A€ SD, . Then

maxH {| a,, |-u axw P, [A(anm)]} <|det A

U uu |

< mln H { i Jk M max w ij [A(an—kﬂ)]} .

ueazn X ’ |
u

Remark 3.1. Since x <1, then
ax PU[A(an—k+l)] > ,U max Pu[A(an—k+l)] )

Ustn-k | a,, ’ Utk | a,, ’
Thus, bounds for determinants in Theorem 3.1 are better than that of [6, Theorem 3].
Especially, we can assume

o ={nLa,={n-Ln}a,={n-2,n-1Ln},--,a, ={L 2,---,n}=N.
Then o, ,,—a,  ={k},k=12,---,n, with o, =<, and
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PIA@ 1= Y layl= Y la, .

vea, v=u+1

max |8y | (10)
/J i+1<u<n
| auu max z | au

i+1<o<n ’“J‘
v=u+1

Then, we obtain the following Theorem.
Theorem 3.2. Let AeSD, and P,, i is defined in (10). Then

; D la, |, Zlaw \

| By |_ﬂlTSXL Z |8y | <|detA|<H | 8 |+ll'lmaXL Z |8y |
n-k

k | u| v=k+1 =1 | ul v=k+1

I
-

Obviously, we improve the following Theorem 3.3 [7, Theorem 1].
Theorem 3.3 [7, Theorem 1]. Let A€ SD, . Then

ll[{| a, |-m, z |a,, }<|detA|<l_[{|akk | +m, z |a,, }

k=1 v=k+1 v=k+1
where
a
m _ makX | k||
i+1<k<n
| akk | z | ak \
v=k+1

For an analogous result of SDD,, let y denote all rearrangements of the elements in N with
a, ={i, = ]}, withe i, be such as in (3).
Theorem 3.4. Let AeSDD, , and A¢SD, and with i, be such as in (3). Then

T - P A, )]
m?X | A, | H {‘ aj i | H ZQ‘?{)I( }V|a—|kl ij [Ale, 1) <[det Al
k=1 e i,

. -1 3 P [Ale, y.1)]
<min | aiQiQ | H | ajk n | s maX . e ij [A(an—kﬂ)] .

4 k=1 ea—{io } |aiviv |
Remark 3.2. Since <1, then

I:)iO[A(an—k+1)] > ~ max I:)iv )
| ivea—{iy }| ai i |

| aioio
Thus, we can obtain the better bounds for determinants than the bounds in [6, Theorem 4].
Theorem 3.5. Let Ae H_ . Then

n n
mlInH{] ajkjk |_le}S| detAlS m}?XH'{] ajkjk |+le}’
k=1 k=1

where

Rjk = {Xiﬂgna P [(A>|(a?(0|[n k+l)] P [(AX)(ankJrl)]}’

and X =diag(x,, X,,---, X,) be a positive diagonal matrix and satisfies AX € SD,, .
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Proof. Since Ae H,, by Lemma 1.1, then, there exists an positive diagonal matrix X satisfy AX eSD, .
Further, according to Theorem 3.1, we obtain the results.
Corollary 3.1. Let A C™" and satisfies (4). Then

n 1 n n 1 n
H{’ Ay l_X_ Z | X, |} < detA’SH{’ Ay |+X_ Z | X, \},
k-1

k=1 k v=k+1 k v=k+1
where
P(A
L, te |\|2’
X = |att|
g, teN,
R P
tZN:laitl\T;\ Pj_thz,.lajth?;\
max ——2————< & <min ) , VieN,jeN,. (11)
ey |-y 8| N 2y |
ii {% it tele it

Proof. According to Lemma 1.5, we select the positive diagonal matrix X and its elements such as in (11),
then AX €SD, . Further, by Theorem 3.5, we complete the proof of Corollary 3.1.

4. Bounds for the Schur complement of SD, and SDD,

In this section, according to Geshgorin’s theorem, we give the localization for eigenvalues of the Schur
complement of SD and SDD, . Further, we improve the lower bound for eigenvalues of Schur

complement of SD_ in [6, Theorem 5].

Theorem 4.1. Let AeSD,, @; be defined as in (7) and «, & be defined as in Lemma 2.1, A(A/ a)
denote the set of eigenvalues of A/« , and A/a =(&,) . Then, for any eigenvalue A of the Schur
complement of SD_ , we have.
TELQH a-J‘d'I | _Pj‘ (A) + aA)j‘] S| A |S Ti%[l a-juju | +Pju (A) —aA)ju]-
Proof. By Geshgorin’s theorem, we obtain that
|A-aul<P, (Al a).
Thus
|an|—Pjt(A/a) A5 an|+Pjt(A/a).
Further, according to Theorem 2.1, we have
|a;; |—Pjt(A)+a}j[ SPASE-T |+Pjt(A)—a}j[.
Thus, we complete the proof of Theorem 4.1.

Remark 4.1. By comparison, we know that the above bounds for eigenvalues are more accurate than the
bounds in [6, Theorem 5].

Theorem 4.2. Let AeSDD, and A¢SD,, with iy be such as in (3), @; be defined as in (3), &, a° be

defined as in Lemma 2.1, A(A/ ) denote the set of eigenvalues of A/« , and denote A/ = (&) . Then,
for any eigenvalue A of the Schur complement of SD, , we have.

Enelarg I:l ajtjt | _Pjr (A) + ij‘:l S| ﬂ“ |S I;ni)c( ':| ajuju | +Pju (A) _iju:l-
Proof. According to Theorem 3.2, by the similar way to the proof of Theorem 4.1, we obtain Theorem 4.2.

5. Examples

In this section, we present some examples to illustrate these bounds in this paper are more efficiency
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than bounds in [6,7].

Example 1. Let

3 -11
A=|2 4 1|, detA=27.
0 1 2

By Theorem 3.1: 14.6968 < det A < 35.0049. By [6, Theorem 3]: 9.75 < det A< 42.75.

By Theorem 3.3 ([7, Theorem 1]): 11.1056 < detA < 40.4536.
Example 2. Let

311
1 2 0}, detA=19.
2 3 4

By Theorem 3.2: 9 < det A< 39. By Theorem 3 of [7]: 6 <det A<53.
Example 3. Let

A

5 -1 1 2
2 6 1 2
A= .
0 1 41
2 -2 1 8

Obviously, A be a strictly diagonally dominant matrix. Without loss of generality, we assume
a={12}, a° ={3,4}. Then
_(3.9063 0.8125

0.7500 7.5000
According to Theorem 4.1, we have

Enirc1[| a,; [-P,(A+a;]=24<2]< rjna>§[| a,; [+P, (A)-a;]=11.6.

], A(A/ o) ={3.7440,7.6622}.

According to Theorem 5 in [7], we have
| A]> Eneiarc\[| a;; | -P, (A) +a)jt](: 2.17).
By numerical comparison, we know that the lower bound for eigenvalues is more accurate than the lower
bound in [7].
Example 4. Let

5 -2 15 2
2 6 1 2
A= .
01 4 1
2 -2 1 8

Obviously, AeSDD,, but A¢SD,, and i, =1 be such as in (3). Without loss of generality, we assume
a={12},a° ={3,4}. Then

Alg— (3.9412 0.8235

0.4706 7.4118

miarch a;; |-P, (A)+@; | =8.22<| A I< Ti)c([l a;; |+P, (A -, |=127.

], A(A/ o) ={3.8329,7.5201}.
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