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Abstract. A (2,1)-total labelling of a graph  is an assignment of integers to each vertex and 

edge such that: (i) any two adjacent vertices of G  receive distinct integers, (ii) any two adjacent edges of G  
receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least 2. The  
span of a (2,1)-total labelling is the maximum difference between two labels. The minimum span of a (2,1)-

total labelling of G  is called the (2,1)-total number and denoted by .  

= ( , )G V E

2 ( ) t G
 A cactus graph is a connected graph in which every block is either an edge or a cycle. In this paper, we label 
the vertices and edges of a cactus graph by (2,1)-total labelling and have shown that, 

 for a cactus graph, where 21 ( )     t G   is the degree of the graph G . 
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1. Introduction 

Motivated by frequency channel assignment problem Griggs and Yeh [5] introduced the -

labelling of graphs. The notation was subsequently generalized to the -labelling problem of graphs. 

Let 

(2,1)L
( , )L p q

p  and  be two non-negative integers. An -labelling of a graph G  is a function c  from its 

vertex set  to the set {0,  such that 

q ( , )L p q
( )V G 1, , } k | ( ) ( ) |  pc x c y  if x  and y  are adjacent and 

 if | ( ( c)c x ) |y  q x  and  are at distance 2. The -labelling number y ( , )L p q , ( )p q G  of  is the 

smallest  such that G  has an -labelling  with max{ (

G

k ( , )L p q c ) | ( )} =c v v V G k . 

 The -labelling of graphs has been studied rather extensively in recent years [2, 8, 12, 16, 17, 18]. ( , )L p q

 Whittlesey at el. [19] investigated the -labelling of incidence graphs. The incidence graph of a 

graph G  is the graph obtained from G  by replacing each edge by a path of length 2. The -labelling 

of the incident graph  is equivalent to each element of  such that: 

(2,1)L
(2,1)L

G ( ) ( )V G E G

(i) any two adjacent vertices of  receive distinct integers, G

(ii) any two adjacent edges of  receive distinct integers, and G
(iii) a vertex and an edge incident receive integers that differ by at least 2. 

This labelling is called (2,1)-total labelling of graphs which introduced by Havet and Yu [6] and 
generalized to the ( , -total labelling, where  be an integer. A k - -total labelling of a graph G  

is a function c  from  to the set {0,  such that 

1)d
V G

1d
1,

( ,1)d
( )( ) ( ) E G , } k ( )c u c

= 1

v  if  and  are adjacent 

and | (  if a vertex u  is incident to an edge e . The ( , -total number, denoted by , is 

the least integer k  such that G  has a - -total labelling. When , the (1,1)-total labelling is well 
known as total colouring of graphs. 

u v

) )c u ( c e | d 1)

d

d ( t
d G)

k ( ,d 1)
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Let  (or simply  ) denote the maximum degree of a graph G . ( ) G

Havet and Yu [6] proposed the following conjecture. 

Conjecture 1 .  ( ) { 2 1,2 1}       t
d G min d d

2. Some general bounds of ( ,1)d -total labelling 
It is shown in [6] that for any graph , G

(i) ; ( ) 2 1    t
d G d

(ii) ; and ( ) 2 2 ( 2) 2 (16 8) 1         t
d G log log d d

(iii)  if ( ) 2 1   t
d G 5   is odd. 

Again in [6] it was shown that 

(i) ; ( ) 1    t
d G d

(ii)  if  is -regular; ( )   t
d G d G 

(iii)  if ; and ( )   t
d G d  d

(iv) , where ( ) ( ) ( ) 2     t
d G G G d ( ) G  and ( ) G  are known as chromatic number and 

chromatic index of G  respectively. 

Let Mad  is the maximum average degree of G , Mad . 

Montassier and Raspaud [15] proved that if G  be a connected graph with maximum degree , , then 

 in the following cases: 

( )G

2 

( ) = {2 | ( ) | / | ( ) |, }G max E H V G H G
 2d

( ) 2  t
d G d

(i)  and Mad2  d 1
5

( ) <
2

G ; 

(ii)  and Mad ( ) ; 2  d 2

3

< 3G

(iii)  and Mad2  d
10

( ) <
3

G . 

For a complete graph , the result for ( , -total labelling is given in [6]. If n  is odd then 

; if n  is even then 

nK

, 2 n

1)d

2 ( ) = { 2 2 2}   t
nK min n d d 2 ( ) = { 2 2,2 2}    t

nK min n d n d , 5 n d , 

,  and 2 ( ) = 2 1  t
nK n d 102> 6n d 4d 2 ( ) { 2 2,2 1}    K n d n dt

n  otherwise. Then they 

focused in (2,1)-total labelling and shown that if 2  , then 2 ( ) 2 2   t
nK  and therefore the ( , -

total labelling conjecture is true when  and 

1)d

= 2p = 3 . In fact, the bound for this special case is tight as 

 [6]. 2 4( ) = 7 t K

In [13], Molloy and Reed proved that the total chromatic number of any graph with maximum degree   
is at most   plus an absolute constant. Moreover, in [14], they gave a similar proof of this result for sparse 
graphs. 

In [7], it was shown that for any tree T , 21 ( ) 2     t T , where   is the maximum degree 

among all the vertices of the tree. 

The -total labelling for a few special graphs have been studied in literature, e.g., complete graphs 
[6], complete bipartite graphs [11], planar graphs [1], outer planar graphs [3], products of graphs [4], graphs 
with a given maximum average degree [15], etc. A more generalization of total colouring of graphs so called 

-colouring, was defined and investigated in [9]. 

( ,1)d

[ , , ]r s t

It is shown in [10] that for any cactus graphs, 2,11 3      . Now in this paper, we label the 

vertices and edges of a cactus graphs G  by -total labelling and it is shown that . (2,1) 21 2     t
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Lemma 1  [6] If  is a subgraph of G , then .  H 2 2( ) ( ) t tH G

3. The (2,1)-total labelling of induce sub-graphs of cactus graphs 

Let  be a given graph and U  is a subset of V . The  induced subgraph by U , denoted by , 

is the graph given by 

= ( , )G V E [ ]G U
[ ] = ( , )G U U E , where = {( , ) : , E u v u v U  and 

( , ) }.u v E

 
 

Figure  1:  Some induce subgraphs of cactus graph. 

The star graph  is a subgraph of . For any star graph 1,K ,n mK 1,K  one can verify the following result. 

Lemma 2  For any star graph , 1,K 2 1,( ) =  2 t K .  

3.1. (2,1)-total labelling of cycles 
3.1.1  (2,1)-total labelling of one cycle 

Lemma 3  For any cycle  of length , nC n 2 ( ) = 4 = 2  t
nC .  

Proof.  Let , ,  , 0v 1v 1nv  be the vertices of the cycle . We classify  into two groups, viz., , 

. Then the (2,1)-total labelling of vertices and edges of the cycle are as follows. 
nC nC 2kC

2 1kC

Case 1.  Let  (see Figure 2(a)). = 2n k

12( ) = 0ic v , , , for 2 1( ) =ic v 2 2 1( , ) = 3i ic v v = 0,1,2, , 1i k ; , for 

 and . 
2 1 2 2( , ) = i ic v v 4

= 0,1,2, ,i k 2 2 1kc v 0 ) = 4( ,v

 

Figure  2:  Illustration of Lemma 3 

Case 2.  Let  (see Figure 2(b)). = 3n

0( ) = 0c v , , , ,  and . 1( ) = 2c v 2( ) = 4c v 0 1( , ) = 4c v v 1 2( , ) = 0c v v 2 0( , ) = 2c v v

Case 3.  Let  (see Figure 2(c)). = 2 1n k

We label the vertices as , for 2( ) = 0ic v = 0,1,2, , 1i k ; , for 2 1( ) =ic v 1 = 0,1,2, , 2i k ; 

 and . And we label the edges as 2 1( ) =kc v 2 2( ) = 4kc v

2 1 2( , ) =i ic v v 3 2 2 1( , ) = 4i ic v v, , for = 0,1,2, , 1i k ,  and . 2 1 2( , ) =k kc v v 0 2 0( , ) = 2kc v v

From all above cases, we conclude that, 2 ( ) = 4 = 2  t
nC .                              
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3.1.2  (2,1)-total labelling of two cycles 

Lemma 4  If a graph  contains two cycles having a common cutvertex with degree 4, then,  (= )n mG C C

2

6,
( ) =

5,
 t  when length of each cycle is even;

G  
 otherwise.





 

Proof.  Let G  contains two cycles  and  of lengths  and  respectively. Again let  be the 

cutvertex and v v  and 
nC

, ,
mC

1

n m 0v

0 1 1, , ,  nv 0 1 ,    mvv v be the vertices of nC nd mC spectively. Now we label the 

vertices and edges of the graph as follows. 

 a  re

 

Figure  3:  Illustration of Lemma 4 

 

Figure 3: (continuation) 

Case 1.  For ,  (shown in Figure 3(a)). = 3n = 3m

At first we label the cutvertex  by 0. Then we label the vertices and edges of first  (i.e., ) as 

same as given in case 2 of previous lemma. And then we label other vertices and edges as 
0v 3C nC

1( ) = 1c v , 

, ,  and 2( ) = 2c v 0 1( , ) = 3c v v 1 2( , ) c v v = 4 2 0( , ) = 5c v v . 

Case 2.  For , , . = 3n = 2 m k i = 0,1i

We label the edges and vertices of  as same as in the above case. Then we label the second cycle as 

follows. 
3C

When  is even, i.e.,  (shown in Figure 3(b)), then m = 2m k

12( ) = 0ic v , , , for 2 1( ) =ic v 2 2 1( , ) = 3 i ic v v = 0,1,2, , 1i k ; , for 

;  and 
2 1 2 2( , ) =  i ic v v 4

= 0,1,2, ,i k 2 2 1( ,kc v v 0 ) = 3 0 1( , ) = 5c v v . 

When  is odd, i.e.,  (shown in Figure 3(c)), then  m = 2 1m k

we label the vertices , = 1,2, , 2 1 iv i k  and the edges 1( , ), = 1,2, , 2 2  i iv v i k , , 0 1( , )v v 0 2( , )kv v  

as same as in the above except the label of the vertex 2kv  and the edge 2 1 2( , ) k kv v . We label that vertex and 

that edge as  and . 2( ) = 2kc v 2 1 2( , ) = 4 k kc v v

Case 3.  For , , . = 2 n k i = 2 m k i = 0,1i

When (even), (even) (shown in Figure 3(d)), then we label the vertices and edges of  

as same as in case 1 of Lemma 3. Now we label all the vertices of the cycle  as the labelling of the 

vertices of the cycle . Now we label the edges of  as follows. 

= 2n k = 2m k nC

nC

nC mC
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60 1( , ) = 5c v v ,  and 2 1 0( , ) =kc v v 2 2 1( , ) = 3 i ic v v , for = 0,1,2, , 1i k , 

2 1 2 2( , ) =  i ic v v 4 , for = 0,1,2, , 2i k . 

When  (odd),  (even) (shown in Figure 3(e)), then we label the vertices and edges of 
 as same as in case 3 of previous lemma. Then we label another cycle as same as in the above subcase 

except the label of the edges  and 

= 2 1n k = 2m

0 1( , )v v

k

)
nC

2 1 0( ,kv v  and we label that edges as 

0 1( , ) = 3c v v  and 2 1 0( , ) = 5kc v v . 

When  (odd),  (odd) (Figure 3(f)), then the labelling procedure of the  as same 

as given in case 3 of Lemma 3. And then we label the cycle  as same as given in case 2 (for , 

). 

= 2 1n k

1

= 2 1m k nC

mC = 3n

= 2 m k

   Here the degree of the cutvertex  is 4. Then from all the above cases, it follows that 0v

2

6,  both cycles are of even length;
( ) =  

5,  otherwise.
 t G





                                                  

3.1.3  (2,1)-total labelling of three cycles 

Lemma 5  Let G be a graph contains three cycles and they have a common cutvertex  with degree 0v = 6 , 

then  

  2

2,
( ) =

1,
t  when three cycles are of even lengths;

G
 otherwise.


 
 

Proof.  Let ,  and  be three cycles and nC mC lC 0 1 1, , ,  nv v v ; 0 1 1, , ,   mv v v

(= 6)

;  be the vertices 

of them. They joined with a common cutvertex  with degree 
0 1 1, , ,   lv v v

0v  . The labelling procedure of two 

cycles are given in previous lemma. Now according to the previous lemma we have to label the vertices and 
edges of the remaining cycle . When we label , there are three cases arise, viz., ,  (even) 

and l  (odd). Here the label of the cutvertex is 0. Then we label the third cycle as follows. 
lC lC = 3l = 2l k

= 2 1k

 
                                                                                                                                                                                                                                                                                          

Figure  4:  Illustration of some cases of Lemma 5 

 

Figure 3: (continuation) 
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Case 1.  When , then we relabel = 3l 0 1( , )v v , 1v , 1 2( , ) v v , 2v  and 2 0( , )v v  by 6, 1, 4, 2 and 7 respectively. 

Case 2.  When  (even), then we label the vertices of  as = 2l k

1

2

4

7

2kC

   , for ; 2( ) = 0ic v = 1,2, , 1i k

   , for ; 2 1( ) =ic v = 0,1, , 2i k

   and . 2 1( ) =kc v

And the edges as 

   , for ; 2 2 1( , ) = 3 i ic v v = 1,2, , 1i k

   , for ; 2 1 2 2( , ) =  i ic v v = 0,1, , 2i k

    and 0 1( , ) = 6 c v v 2 1 0( , ) =kc v v . 

If the cycle  attach with two cycles of even lengths then the label of two edges incident on  of  

are different. And the labels are 
lC 0v lC

    and 0 1( , ) = 7c v v 2 1 0( , ) = 8kc v v  respectively. 

Case 3.  When  (odd), then the labels of the vertices and edges of  are same as the labelling of 

the cycle  given in case 2 (for  and 

= 2 1l k lC

mC = 3n = 2 1m k ) of lemma 4 except the labels of two edges 0 1( , )v v  

and ( . And we relabel these two edges as 2 1 0, v )kv

    and 0 1( , ) = 6 c v v 2 1 0( , ) = 7kc v v  respectively. 

   Here we see that the values of 2
t  are 7 and 8. 

   Therefore we conclude that, 

2

2,  when three cycles are of even lengths;
( ) =

1,  otherwise.
t G

 
 

                                        

3.1.4  (2,1)-total labelling of finite number of cycles 

We can extend the lemmas 4 and Lemma 5 for the finite number of cycles when they are joined at a 
common cutvertex. 

Lemma 6  If a graph G  contains finite number of cycles of finite lengths and if they are joined with a 
common cutvertex with degree  , then,  

  2

2,
( ) =

1,
t when all cycles are of even lengths;

G
 otherwise.


 
 

Proof.  Let us consider a graph G  contains n  number of cycles of length 3 (triangles). The n  triangles 

joined with a common cutvertex say  with degree 0v = 2 n , then we have to prove that 2 ( ) 1 =  t G . Let 

 be the n  number of triangles and  be the cutvertex (see Figure 5). Then G  is equivalent to 

. Again let ,  and 

0 1 1, , ,  nT T T

0

 i
v

T
0v

1ijv = 1i , 2 1, ,= 0, j n , be the vertices of G . We label the vertices ,  and 

, for , using the same procedure of labelling of 

1 jv 2 jv

1 2( , )j jv v = 1,2,j , 1n 1v ,  and the edge 2v 1( , 2 ) v v  of 

 in case 1 of Lemma 3. Then we label the remaining two edges as  3C

 0

2 2,  if 1;
( , ) =

2 3,  if 2,  for 0,1,..., 1.ij

j i
c v v

j i j n

 
    

1

 

Then the (2,1)-total number of G  is 2 n  which is exactly equal to 1  . 
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Figure  5:  The graph contains  triangles n

 Now we consider the graph G  which contains  number of cycles of length 3 and m  number of cycles 

of length 4. They joined with a cutvertex with degree 

n
= 2( ) n m . Then the 2

t -value for that graph is 

. 1 

 

Figure  6:  The graph contains n  's and  's 3C m 4C

Let  be the n  number of cycles of length 3 and 0 1 1, , ,  nT T T 0 1, , , 1 mR R R  be the n  number of cycles 

of length 4 (shown in Figure 6). They are joined with a common cutvertex say . Let ,  and 0v ijv = 1,2i

= 0,1, , 1j n , be the vertices of all 's and , iT 0v kpv ,  and , be the vertices of 

all 

= 1,k 2 = 0,1,p , 1m

pR 's. Now the labelling of vertices of all pR 's are same as the labelling of vertices of even number of 

cycles. Then we label the edges as follows: 

1 2( , ) = 4 p pc v v , , for 2 3( , ) = 3 p pc v v = 0,1, , 1p m  and then we label the edges 0( , )kpv v , for 

 and = 1,3 = 0,k 1, , 1 mp  as follows:  

  0

2 2( 1),  if 1;
( , ) =

2 2( 1) 1,  if 2,  for 0,1,..., -1.kp

n p k
c v v

n p k p m

        
We have . 0 3, 1( , ) = 2 2 1 = 1    mc v v n m

Lastly we prove that if a graph contains n  number of cycles of length 4 and all the cycles joined with a 

cutvertex then the value of 2
t  is . 2 

 

Figure  7:  The graph contains  number of cycles of length 4 n

 Let us denote the n  number of cycles of length 4 by 0 1 1, , ,  nR R R  (see Figure 7), joined with a 

JIC email for subscription: publishing@WAU.org.uk 



Nasreen Khan, et al: (2,1)-Total Labelling of Cactus Graphs 250
 

common cutvertex say . Again let , ,  and 0v 0v jiv = 1,2,3j = 0,1, , 1i n  be the vertices of iR 's. We 

label all the vertices of each cycle as same as the label of the vertices of even cycle. And c v , 

, for . Then we label the edges which are incident to the cutvertex  as  
1 2i iv

0

( , ) = 4

v



2 3( , ) = 3i ic v v

G

= 0 , 1

0( , jic v v

0 3, = 2( 1  nv n

( ) =t G






,1,i

1)

2

n

n

2(
=

2(





1) 

2

1,

 
 

1

1

2 =

,

 other

2

) 1,  if 

) 2,  if 

i j

i j

 
 

2 2 = n

 when all cycl

wise.

( ) =

1;
)

2, .




 
 for 0,1,..., -1i 

es are of even lengths;

We have c v . ( , 2

By using the above results, the general form can be proved by mathematical induction. That is, if a graph 
 contains finite number of cycles of finite lengths, then 

                                           

Lemma 7  If a graph G  contains finite number of cycles of any length and finite number of edges joined 

with a common cutvertex of degree , then 1 G

n

t .  

Proof.  At first we prove that if a graph G  contains  number of cycles of length 3, m  number of cycles of 
length 4, p  number of edges and they are joined with a common cutvertex with degree  ( = 2 ), 

then the value of 

 2n m  p

2
t 1  will be . Let iv = 0,1, , 1i

1

p,  be the other end vertices of each edge. We 

label all 's as , for iv ( )ic v = 0= 1 ,1, , 

2(n

i . Then according to the previous lemma we label the edges 

, for  as 

p

) 1 = p

n

0( , )iv v

0( , ) =ic v v

= 0,1, 1

2 1 2 p

, i p

 m2 = n 1m . 

Again let us consider that the graph G  contains  number of cycles of length 4 and p  number of edges 

joined with a cutvertex with degree . Then we have to prove that . = 2  p

0 0( , )

n 2
t ( ) =G 1 

Now we label the vertex  and the edge 0v v v

) = 2 2

 by 4 and 2 respectively. Then according to the 

previous lemma we label the edges as 0( ,   njvc v j , for = 0,1, , 1j p

1 

2 ( ) = 2

. 

Then we have c v . 0 1pv



( , ) = 2n

2
t

0v

2 

( ) =

1 = 2  n p

1 

p

 

1 =

By the above results, generally we conclude that if a graph contains finite number of cycles of any length 

and finite number of edges, then .       G

Lemma 8  Let G  be a graph, contains a cycle of any length and finite number of edges and they have a 

common cutvertex . If  be the degree of the cutvertex, then  t G

n

, if the cycle is of even length 

and , otherwise.  1 
Proof.  We consider that G  contains an cycle  of length  and nC p 0 1, , number of edges. Let 1,  nv v v  

are the vertices of  and nC 0 1, , 1, v v pv  are the end vertices of all edges, joined with the cutvertex. Let   

be the degree of G , then = 2  p . Then we label the vertices and edges of G  as follows. 

 

Figure  8:  Illustration of Lemma 8 

Case 1.  Let  (even). = 2n k
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Here , then we label all the endvertices of the edges as 0( ) = 0c v ( ) = 1ic v , for = 0,1, , 1i p . 

Now we label the edges  as 0( , )jv v 0( , ) = 5 jc v v j  for = 0, 1, , 1j p . 

Now . 0 1( , ) = 4 = 2   pc v v p

Case 2.  Let  and  (odd). = 3n = 2 1n k

Here we label the first edge  by 3. Then the labelling procedure of all endvertices are same as 

given in the above case. And we label the remaining edges as follows 
0 0( , )v v

0( , ) = 4 kc v v k , . = 1, 2, , 1k p

Here . 0 1( , ) = 3 = 1   pc v v k

From the above two cases we see that 2 ( ) = 2  t G , if the cycle is of even length and , otherwise. 

 

1 


3.2.  (2,1)-labelling of sun  
Let us consider the sun  of  vertices. This graph is obtained by adding an edge to each vertex of a 

cycle . So  is a subgraph of . The result for any sun  is given below. 
2nS 2n

2nSnC nC 2nS

Lemma 9  For any sun , 2nS 2 2( ) = 5 = 2  t
nS .  

Proof.  Let v be the vertices of nC nd iv s adjacent to 10 1 1, , ,  nv v   a i iv d 1 an iv o complete 2nS , e add 

an edge ( iv , ) to the vertex iv , i.e., iv 's re the pendent vertices. To label this graph we consider the 

following three cases. 

. T  w

iv  a

 

Figure  9:  Illustration of Lemma 9 

Case 1.  Let  (shown in Figure 9(a)). = 3n

We label the cycle  according to the Case 2 of Lemma 3. Then we label other vertices and edges as 

follows: 
3C

0( ) = 1c v , , , 1( ) = 5c v 2( ) = 0c v 0 0( , ) = 3c v v , 1 1( , ) = 1c v v  and 2 2( , ) = 5c v v . 

Case 2.  Let  (even) (see Figure 9(b)). = 2n k

0

We label the cycle  as per Case 1 of Lemma 3. And we label other vertices and edges of  as 

follows: 
nC 2nS

   ,  for 2( ) = 1ic v 2 1( ) =ic v = 0,1, , 1i k  and ( , ) = 5i ic v v  for . = 0,1, , 1i n

Case 3.  Let  (odd) (see Figure 9(c)). = 2 1n k

Here the labelling procedure of the cycle 2 1kC  is same as the Case 3 of Lemma 3. Now the labelling of 

other vertices and edges are as follows: 

JIC email for subscription: publishing@WAU.org.uk 



Nasreen Khan, et al: (2,1)-Total Labelling of Cactus Graphs 252
 

02( ) = 1ic v ,  for 2 1( ) =ic v = 0,1, , 1i k , 1( ) = 5nc v , ( , ) = 5i ic v v  for = 1,2, , 1i n , 

 and 0 0( , ) = 3vc v 1 1( ,  ) = 1n nc v v .  

Here we see that (2,1)-total number for that graph is 5. 

Hence .                                                                          2 2( ) = 5 = 2  t
nS 

Lemma 10  Let G  be a graph obtained from  by adding an edge to each of the pendent vertex of , 

then  
2nS 2nS

2 2( ) = 2 = 5  t
nS .  

Proof.  Follows from Figure 10.                                                                    

 
                                           

Figure  10:  Illustration of Lemma 10 

Lemma 11  Let a graph G  contains two cycles of any length and they are joined by an edge. If (= 3)  be 

the degree of , then,  G

2 ( ) = 5 = 2.  t G  

Proof.  Let the graph G  contains two cycles  and  with vertices  and nC mC 0 1 1, , ,  nv v v 0 1, , , 1   mv v v  

respectively. And the cycles are joined by an edge 0( 0, )v he degree of the graph is (= 3)  we label 

the vertices and edges of the graph as follows. 

v . T  Now

 
                                                                                                                                                                                                        

Figure  11:  The graph G  

Case 1.  Let , . = 3n = 3m

First we label the vertices and edges of  as same as given in case 2 of Lemma 3. Now we label the 

edge  by 3 and then we label the other cycles as follows. 
3C

0 0( , )v v

   , , , 0( ) = 1c v 1( ) = 0c v 2( ) = 2c v

   , , . 0 1( , ) = 4 c v v 1 2( , ) = 3 c v v 2 0( , ) = 5 c v v

Case 2.  Let , = 3n = 2 m k i = 0,1i, . 

We label the vertices and edges of  as same as given in the above case. Then we label the edge 3C

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, Vol. 5 (2010) No. 4, pp 243-260 253
 
 

k

0

0 0( , )v v

c v

 by 5 and other cycles as follows. 

When  is even, i.e., , then m = 2m

   , , for 2( ) = 1i 2 1( ) =ic v = 0, 1, , 1i k , 

   , for , 2 2 1( , ) = 3 i ivc v

c v

= 0, 1, , 1i k

   , for 2 1 2 2( , ) =  i iv 4 = 0, 1, , 2i k  

   and . 1 0( , ) = 4 nc v v

When  is odd, i.e., , then we label the vertices and edges of  as same as given in the 

above subcase except the label of the vertex 

m = 2 1m k mC

1mv , i.e., 2kv  and the edge 2( , 1)  v vm m , i.e., . We 

label the vertex and the edge as follows. 
2 1 2( , k kv v )

5

k

    and . 2( ) = 2k 2 1 2( , ) = k kc v vc v

Case 3.  Let , , . = 2 n k i = 2 m k i = 0,1i

When  and , then we label the cycle  as same as given in Case 1 of Lemma 3. Then 

we label the edges ( ,  by 5 and the cycle  as same as in the subcase (when m  is even) in Case 2 of 

this lemma. 

= 2n k = 2m

0 0 )v v
nC

mC

When  and , then we label the edges and vertices of  as same as given in the 

subcase (when  is odd) of the above case. 

= 2n k
m

= 2 1m k mC

When  and , then we label the vertices and edges of  as same as given in Case 

Finally, we get .                                                                 

= 2 1n k

2 ( ) t G

= 2 1m k

5 = 2 
nC

=

Corollary 1  Let a graph G  contains two cycles of any lengths and they are joined by two edges. If   be 
the degree of the graph G , then 

 2 ( ) = 2.  t G  

Lemma 12  Let a graph G  contains a cycle of any length and each vertex of the cycle contain another cycle 
of any length, then 

 2 ( ) = 6 = 2.  t G  

Proof.  At first we take the main cycle are of two types, viz., , i.e., even and , i.e., odd. Let 

 be the vertices of . 
2kC 2 1kC

0 1, ,v v 1, nv nC

 

Figure  12:  Illustration of Lemma 12 
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Figure 12: (continuation) 

Case 1.  Let  (even). = 2n k

1

ollows: 

0

When each vertex of  contains the cycles of length 3 (shown in Figure 12(a)). nC

Let ; ; ;  are the vertices of the cycles of length 3. Now the labelling 

of the cyc nC  is same as the labelling procedure of the cycle of even length. Then we label the other 

vertices and edges as f

0 0 0, , v v v

le 
1 1 1, , v v v  1 1, ,   n n nv v v

2( ) = 1ic v ,  for 2 1( ) =ic v = 0,1, , 1i k  and 2( ) = 2ic v  for . = 0,1, , 1i n ( , ) = 5i ic v v , 

,  for ( , ) = 4 i ivc v ( , ) = 6i ic v v = 0,1, , 1i n . 

When each vertex of  contains the cycles of length 4 (see Figure 12(b)). nC

Let ; 0 0 0 0, , ,  v v v v 1 1 1 1, , ,  v v a v ; ; 1 1 1, , , 1     n n n nv v v v  be the vertices of all the cycles of length 4. We 

label the cycles as follows: 

   ,  and  for 2( ) = 1ic v 2( ) = 0ic v 2( ) = 1ic v = 0,1, , 1i k ; 

   ,  and  for 2 1( ) =ic v 0 2 1( ) =ic v 1 02 1( ) =ic v = 0,1, , 1i k ; 

   , ,  and ( , ) = 5i ic v v ( , ) = 4 i ic v v ( , ) = 3 i ic v v ( , ) = 6i ic v v  for = 0,1, , 1i n . 

Case 2.  Let  (odd). = 2 1n k

When  and all cycles are of length 3 (see Figure 12(c)). = 3n

The labelling procedure of the cycle  is same as given in case 2 of Lemma 3. Now we label the other 

vertices and edges as follows: 
nC

   , , , 0( ) = 1c v 0( ) = 2c v 0 0( , ) = 3c v v 0 0( , ) = 4 c v v , 0 0( , ) = 5c v v ; 

   , , , 1( ) = 0c v 1( ) = 1c v 1 1( , ) = 5c v v 1 1( , ) = 4 c v v , 1 1( , ) = 6c v v ; 

   , , , 2( ) = 3c v 2( ) = 2c v 2 2( , ) = 1c v v 2 2( , ) = 0 c v v , 2 2( , ) = 6c v v . 

When each vertex of  contains the cycles of length 3 (shown in Figure 12(d)). nC

The labelling procedure for the vertices iv , iv  and the edges ( , , , )i iv v ( , ) i iv v ( , )i iv v

)i ( ,

 for 

 are same as the labelling of the graph which contains a cycle of even length and each 

vertices of the cycle contain cycles of length 3 given in case 1. And the labelling of , , , 

= 1,2, , 2 2i k
iv iv ( ,iv v ) iiv v , 

 for  as same as the labelling of the above graph for  respectively. ( , )i iv v = 0,2i k 2,2 k = 0,1,i 2

When all the cycles are of length 4 except the main cycle (shown in Figure 12(e)). 
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We label the vertices and edges iv , iv , iv , ( , )i iv v , ( , ) i iv v ,  and ( , ) i iv v ( , )i iv v  for 

 as same as the labelling procedure of the graph which contains a cycle of even length and 

each vertex contains another cycle of length 4 except the label of the vertex 

= 1,2, , 2 1i k

2 1kv . We label this vertex as 

. For , we label the remaining vertices and edges of the graph as follows: 2 1( ) = 2kc v = 0, 2i k

0( ) = 1c v , , , 0( ) = 0c v 0( ) = 1c v 0 0( , ) = 3c v v , 0 0( , ) = 4 c v v , 0 0( , ) = 3 c v v , ; 0 0( , ) = 5c v v

2( ) = 3kc v , , , 2( ) = 2kc v 2( ) = 1kc v 2 2( , ) = 1k kc v v , 2 2( , ) = 0 k kc v v , 2 2( , ) = 4 k kc v v , . 2 2( , ) = 6k kc v v

Here we see that the minimum label number is 6 which is exactly equal to 2  . 

Finally, we conclude that if a graph G  contains a cycle of any length and each vertex of the cycle 
contains another cycle of any length then, 

   , 2 2( ) = 2 =  t
nS 5   be the degree of the graph.                                        

An edge is nothing but , so . 2P 2 ( ) = 3 t G

3.3.  (2,1)-labelling of paths 
Lemma 13  For any path  of length ,  nP n

2 ( ) = 4 = 2.  t
nP  

Proof.  Let  be the vertices of the path  of length  (shown in Figure 13). We classify 

the path into two cases, viz., even and odd. 
0 1 2 1, , , ,  n nv v v v nP n

 

Figure  13:  (2,1)-total labelling of path  nP

Case 1.  When , i.e., the path is even. = 2n k

We label the vertices and edges of  according to the following rules. nP

   , for ; 2( ) = 0ic v = 0,1, , 1i k

   , for ; 2 1( ) =ic v 1

4

= 0,1, , 1i k

   , for ; 2 2 1( , ) = 3i ic v v = 0,1, , 1i k

   and , for 2 1 2 2( , ) = i ic v v = 0,1, , 1i k . 

Case 2.  When , i.e., the path is odd. = 2 1n k
The labelling of the vertices and edges of the path is same as in the above case, only the label of the last 

vertex  and last edge  are different. We label that vertex and edge as follows: 2kv 2 1 2( ,k kv v )

32( ) = 1kc v  and . 2 1 2( , ) =k kc v v

From all above cases we see that 2 ( ) = 4 = 2  t G .                                         

3.4. (2,1)-total labelling of caterpillar graph 
 Now, we label another important subclass of cactus graphs called caterpillar graph. 

Definition 1 A caterpillar C  is a tree where all vertices of degree  lie on a path, called the backbone of 
. The hairlength of a caterpillar graph C  is the maximum distance of a non-backbone vertex to the 

backbone.  

3
C

Lemma 14  For any caterpillar graph , G 2 ( ) = 2  t G , where   is the degree of the caterpillar graph.  
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Proof.  Let  be the backbone of length n  of the caterpillar graph G  and  be the 

vertices of . We label the vertices and edges of the path by using the previous lemma. Let  be a vertex 

on the path  with degree . Then  different paths (other than backbone) are originated from  of 

variable lengths. We denote such paths by P , where 

nP

n

nP

0 1 2 1, , , , n nv v v v

kvP

k 2k kv
ki
j (= 0,1, , 2)i k  represents the i th path originated 

from the vertex k  and j  is the length of the path. Let us take the first path  and 1k
mP 1 1 1

1 2, , , 1k mv v v v

nP

2k = k

 be the 

vertices of it. We label all the vertices of  by 0 or 1 and label all the edges adjacent to  by 

 because the label of the edges incident on the vertex v  of the path  are either 3 and 4 

respectively. We label the first edge of  by 5 and other edges of P  by using the labelling procedure 

given in the previous lemma. All the labels are allowed to label the vertices of the remaining portion of the 

path . Now we take the second path . Here also the labelling procedure for the path is same as given 

in Lemma 13 except the label of the edge incident on the vertex . We label of the edge by 6 and so on. 

Lastly, we label the first edge of the ( th path incident on the vertex  by . Here , so the 

value of 

1k
mP

)

kv

5,6,7, ,

1k
mP

2k

2

k

1
m

kv

1

2

k
mP

2k
lP

k
kv

 t  is . Similar method apply to all paths joined with the vertices of the path . 2  nP

 

Figure  14:  Labelling of caterpillar graphs 

Therefore, we conclude that, for any caterpillar graph, 2 ( ) = 2.  t G              

The proof of lemma 14 is illustrated in Figure 14. 

4. (2,1)-total labelling of lobster 
Another subclass of cactus graphs is the lobster graph. The definition of lobster graph is given below. 

Definition 2 A lobster is a tree having a path (of maximum length) from which every vertex has distance at 
most k , where  is an integer.  k

The maximum distance of the vertex from the path is called the diameter of the lobster graph. For the 
above definition k  is the diameter. There are many types of lobsters given in literature like diameter 2, 
diameter 4, diameter 5, etc. Figure 16 shows a lobster of diameter 4. 

Lemma 15  For any lobster G , , where 2 ( ) = 2  t G   is the degree of the lobster.  

Proof.  Assume that  be a path of length  of the lobster graph G  and  be the vertices of it. 

Let us consider a vertex  on  from which 
nP n 0 1 1, , ,  nv v v

kv nP p  number of trees be originated. Let  be such 1 2, , , pT T T
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trees. Without lose of generality let the label of the vertex  be 0. Again, let ,  be the 

degrees of these trees. We know that  is 

kv i = 1,2, ,i p

2 ( ) t
iT 2 i  (if 4 i ) [7]. 

 

Figure  15:  Illustration of Lemma 15 

Now we label the edge of the tree  ( ) originated from  by . Let  and iT = 1,2, ,i p kv 4i 1kv 1kv  be 

two adjacent vertices of  on . We label these vertices kv nP 1kv  and 1kv  by 1 (or 0) because the label of  

can be assigned to 0 (resp. 1). And we label the edges ( ,
kv

1)k kv v  and 1( , )k kv v  by 3 and 4 respectively. So 

we see that there are no extra labels are required to label the edges incident on  of the path . So, the 

value of 

kv nP

2
t  of the lobster is , where 2  1 2,= { , , }    pmax .                                                    

   Figure 16 is an example of 4-diameter lobster and the proof of Lemma 15 is illustrated here. 

 

Figure  16:  (2,1)-total labelling of 4-diameter lobster 

Lemma 16  Let  and  be two cactus graphs. If 1G 2G 1 2 1 11 ( ) 2    t G

1G 2G

  and 

, then   ,  is the union of two graphs  and , they 

have only one common vertex v  and max{ ,  
2 2 21 ( )     t G 2 2 21 ( t )   

2}

2G

1 
G

1 2      .  

Proof.  Let  and  be two cactus graphs and 1G 2G 1 , 2  be the degrees of them. Now if we merge two 

cactus graphs  and  with the vertex v  then we get a new cactus graphs G  ( = ). Let 1G 2G 1 2v
G G   be the 

degree of new cactus graph G  and it can be shown that max 1 2{ , }  1 2      . For the graph , 

 and , . Now we have to prove that the lower and 

upper bounds of 

1G

1 2 11 (   t

2

1 )  2G 2G 2 2 21 ( ) t G 2  2  

 t

0u 1u

 will preserve for the new cactus graph G . Let u  and v  be two vertices of that graphs 

and , ; ,  be the adjacent vertices of u  and v  respectively. Let 0v 1v x  be the label of u , then the label 

of  and  may be 0u u1 1x  and . And the label of the edges  and  may be 0( ,u u ) 1( , )u u1x  or 4x 3x  
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and  or 4x 1x  respectively. Similarly, if y  be the label of , then the label of  and  may be v 0v 1v 1y  

and 1y  or . And the label of the edges  and  may be  and  or 4y 0( , )v v 1( , )v v 3y 4y 1y  

respectively. 

Assume that the label of u  be fixed and let it be 0, i.e., x , and the label = 0 y  of v  lies between 0 to 

. That is, the label difference between 2 2  x  and  is one of the integer 0, . y 2 1, , 2

 

Figure  17:  

=x Let the label of the vertices  and  be same, i.e., u v y  (Figure 17). If we join two cactus graphs at , 

then the label of v  remains unchanged and the labels of adjacent vertices  and  will change to 

v

10v 1v x  and 

1x  or . And the labels of the edges  and  will change to 2x 0 )( ,v v 1)( ,v v 5x  and 6x  or x 4  and 

5x . If we increase the label numbers by 1 of all the vertices and edges of G  except v  then there are at 

least one vertex or edge in which we adjust the labelling to preserve the lower and upper bounds of 

2

2
t . 

y yWhen the label difference between x  and = 1x is 1, i.e.,  (see Figure 18), then without loss of 

generality we assume that the label numbers of adjacent vertices of u  are 1x  and 1x  or . And the 
label of the edges  and  are 

4x

0( , )u u 1( , )u u 3x  and 4x 1x or . Now the label numbers of adjacent 

vertices of v  are x  or  and 2x x  or  or 2x 3x  respectively. And for the edges  and , 0( ,v v ) 1( , )v v

3x  or  and  or x 4 4x x  respectively. Now if we increase the label numbers by 1 of all the vertices 
and edges of  except  then we get at least one vertex or edge in which we adjust the labelling to 

preserve the lower and upper bounds of 

2G v

2
t , i.e. the 2

t 1 -value of new cactus graph can't be less than  

and greater than . 2 

 

Figure  18:  

 Similarly, for the label differences 2, 2 23, ,  , the lower and upper bounds of 2
t  for the new 

cactus graph will preserve.                                                  
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Figure  19: (2,1)-total labelling of cactus graphs 

 The (2,1)-labelling of all subgraphs of cactus graphs and their combinations are discussed in the 

previous lemmas. From these results we conclude that the 2
t -value of any cactus graph can not be more 

than  and less than . Hence we have the following theorem. 2  1 
Theorem 1  If  is the degree of a cactus graph G , then  

 21 ( ) 2 .     t G  

The graph of Figure 19 is an example of a cactus graph, contains all possible subgraphs and its (2,1)-total 
labelling. 

5. Conclusion  

The bounds of (2, -total labelling of a cactus graph and various subclass viz., cycle, sun, star, tree, 

caterpillar and lobster are investigated. The bounds of  for these graphs are  and for sun, 

star, caterpillar and lobster it is . For the cactus graph the bound for 

1)

2 ( ) t G 2 ( ) = 4 t
nC

2  2
t  is , 

where  is the maximum degree of the cactus graph G . 
21 (   t )   G 2


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