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Abstract. For underwater arc welding, it is much more complexity and difficulty to detect penetration 
depth than land arc welding. Based on least squares support vector machines (LSSVM), welding current, arc 
voltage, travel speed, contact-tube-to-work distance, and weld pool width are extracted as input units. 
Penetration depth is predicted in underwater flux-cored arc welding (FCAW). For improvement prediction 
performance, the LSSVM parameters are adaptively optimized. The experimental results show that this 
model can achieve higher identification precision and is more suitable to detect the depth of underwater 
FCAW penetration than back propagation neural networks (BPNN). 
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1. Introduction 
The weld penetration depth can mainly represent the weld quality in weld bead geometry (penetration 

depth, bead height, and weld pool width) [1]. If the defective weld penetration occurrences can be recognized 
in time, the weld quality can be monitored on-line. For land arc welding, some reports can be found on 
monitoring welding quality through penetration depth detecting. For underwater arc welding, it is very hard 
to detect the depth of penetration real-time, ascribed to the invisibility of welding process. Up to now, there 
is no research report on this technique in underwater arc welding, due to its more complexity and difficulty 
than land arc welding. Nevertheless, the underwater arc welding technique plays a critical role in 
construction and maintenance of ships, dockyards, port facilities, and ocean terrace etc [2]. As one of gas 
metal arc welding, flux-cored arc welding (FCAW) is suitable for underwater arc welding. In this paper, 
penetration depth detecting in underwater FCAW is investigated in detail. In order to set up a guideline for 
penetration depth detection from the multi-sensor data fusion model, the welding process variables are 
systematically and quantitatively analyzed on their influence on depth of penetration and weld pool width 
through underwater FCAW experiment. Because of hard environment in underwater FCAW, it is difficulties 
to get enough training sample sets for penetration depth prediction. Suggested by Suykens [3-4], the least 
squares support vector machines (LSSVM) is more suitable for non-linearity function prediction with a 
reasonably small size of training sample sets. With higher performance of predication than back propagation 
neural networks (BPNN), LSSVM has been very successfully applied in pattern recognition, non-linear 
function estimation, and machine learning domains, etc [3-6]. Hence, the LSSVM is introduced into 
penetration depth prediction modeling in underwater FCAW. In this model, the radial basis function (RBF) is 
selected as kernel function and the LSSVM parameters are adaptively optimized to improve prediction 
performance. 

2. Methodology 
Underwater FCAW is a complex heat transfer process. The formation of underwater welding pool is 

interacted by electric field, magnetic field, and flow field. The study showed that the depth of penetration 
was mainly affected by heat-transfer energy of workpiece [7]. Moreover, the workpiece thermal energy is 
mainly affected by some underwater welding process variables, such as welding current, travel speed, arc 
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voltage, and contact-tube-to-work distance (CTWD). Suppose the penetration depth is , welding current is P
I , arc voltage is U , travel speed is , and CTWD is S H . Based on multi-sensor data fusion model, P  can 
be represented as 

),,,( HSUIfP                                                                      (1) 

  In addition, there is a relationship between the penetration depth and the weld pool width at certain time 
and welding condition. Combined with the information of weld pool width, the detected result of penetration 
depth will be more reliable.  Thus, the depth of penetration at certain time can be predicted as 

 ),,,,( WHSUIfP                                                                   (2) 

where W  is the weld pool width. In this study, welding current I , arc voltage U , and weld pool width W  
will be acquired and analyzed from welding current sensor system, arc voltage sensor system, and laser 
structured vision sensor system. Meanwhile, travel speed  and CTWD S H can be confirmed and inputted. 
With the higher performance of predication than BPNN, LSSVM is selected as multi-sensor data fusion 
model [3-6]. 

3. Experiment and analysis 

3.1. Experiment 
The LSSVM prediction model of relationships between penetration depth and welding process variables 

must need to be established accurately. Thus, the sufficient experimental data must be provided for 
prediction model training and verifying [8]. 

Conducted the bead-on-plate welding, the experimental materials were 140mm× 40mm × (6～10)mm 
A3 low-carbon steel plates. In this study, the chosen welding process variables were welding current, arc 
voltage, travel speed, and CTWD. The SQJ501 is used as the flux-cored wire with a diameter of 1.6 mm. 
And the Dimension of water tank is 15000 mm× 600mm × 500mm. Positioned in a plane 100mm deep water, 
the workpiece welding procedure is performed. Under the bounds of welding process variables, the optimum 
weld geometry could be formed. 

Travel speed and CTWD are confirmed for the same workpiece during underwater FCAW process. 
Meanwhile, welding current, arc voltage, and weld pool width are detected and recorded in time. For 
different workpiece, at least one of these parameters is variable. At one time of underwater FCAW process, 
welding current, travel speed, CTWD, arc voltage and weld pool width are obtained as input data of trial 
model. To measure the penetration depth, the bead section was cut transversely from the middle position 
using the wire cutting machine. To assure the precision of the specimen dimension, it was etched by HNO3 
3% and H2O 97%. Hence, the actual penetration depth at corresponding time is measured after welding and 
selected as output data of trial model. 

3.2. Effects of the welding current and arc voltage on penetration depth and weld pool width 
 

          
    (a) Penetration depth curves                                                        (b) Weld pool width curves 

Fig. 1: Penetration depth and weld pool width with welding current and arc voltage variable.  
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    (a) Penetration depth curves                                                        (b) Weld pool width curves 

Fig. 2: Penetration depth and weld pool width with travel speed variable.   

With 240 mm•min-1 travel speed and 18 mm CTWD, true penetration depth and weld pool width curves 
for different welding currents at 25V and 30V arc voltage are shown in fig.1. With very significant effect, it 
is evident that an increase in welding current results in increased penetration depth and weld pool width at all 
levels of arc voltage. Thus, welding current is the first parameter to be considered for decreasing penetration 
depth and weld pool width. With less influence than welding current, there is an increase in penetration depth 
and weld pool width with an increase in arc voltage. This is due to the fact that, at higher welding current and 
arc voltage, the fusion rate becomes higher with higher fluidity of the molten wire and causing larger weld 
pool. Therefore welding current can assist in penetration depth control.  

3.3. Effect of the travel speed on penetration depth and weld pool width  
With 210A welding current, 30V arc voltage and 18 mm CTWD, the true penetration depth and weld 

pool width curves for variable travel speed are shown in fig.2. From fig. 2, it can be observed that there is a 
decrease in penetration depth and weld pool width with an increase in travel speed. But the effect is not very 
significant. This may be due to the fact that, if the welding speed is increased, the weld pool becomes smaller, 
penetration depth and weld pool width decrease, but only to a certain limit. 

3.4.  Effect of the CTWD on penetration depth and weld pool width  
 

          
    (a) Penetration depth curves                                                        (b) Weld pool width curves 

Fig. 3: Penetration depth and weld pool width with CTWD variable. 

Fig.3 shows the true penetration depth and weld pool width curves with different CTWD at 210A 
welding current, 30V arc voltage and 240 mm•min-1 travel speed welding condition. Though the CTWD 
does not have much influence on penetration depth and weld pool width, compared to welding current. It can 
be seen from fig.3 (a), if the CTWD is increased, that at the beginning of the drawing the depth of 
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penetration decreases a little and then sharply diminishes. On the contrary, it can be seen from fig.3 (b) that 
the weld pool width first increases a little and then increases more with the further increase of CTWD. Lower 
fusion rate may be attributed for this decrease in penetration depth and increase in weld pool width with an 
increase in CTWD.  

4. The LSSVM model of adaptive optimizing parameters 
Introduced for nonlinear function estimation, LSSVM can be used to predict the depth of penetration in 

underwater FCAW process [3-4].  

Suppose we are given a set of  training data pointsN  N

iii yx 1, 

Ryi

, where  denotes the input space 

of the sample and has a corresponding target value 

n
i Rx 

  for N,i ,1 . The non-linear function 

estimation modelling takes the form as: 

bxwxy T  )()(                                                                    (3) 

where )(x denotes the high dimensional feature space which is nonlinearly mapped from the input space, 

is the weight vector and is the bias term. Then, in the framework of empirical risk minimization the cost 
function is formulated 
w b
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subject to the equality constrains 
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where is the random errors andie  is a regularization parameter in determining the trade-off between 

minimizing the training errors and minimizing the model complexity.  Important differences with standard 
SVM are the equality constrains and the squared error term, which greatly simplifies the problem. 

For solving this optimization problem, The Lagrange function is constructed 
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where  are the Lagrange multipliers. The conditions for optimality solution can be obtained by 

partially differentiating with respect to ,b , and  
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After elimination of , , the following linear equation can be obtained: ie w

                                    =                                                       (8)   
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where , ,  TNyyy ;;1   TN 1;;11 


 TNaaa ;;1  ，  is an NI NN   identity matrix, and the 

Mercer condition has been applied 
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                                     ,  ),()()( jij
T

iij xxKxx   Nji ,,1,                                           (9) 

where NNR  ，  is defined as kernel function. ),( ji xxK

Finally, the parameters ，  are based on the solution to (8). As seen in fig.4 , LSSVM model 

regression can be expressed as [3-4]: 
ia b

bxxKaxy i

N
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                                                           (10) 

where   denotes the input vector of  independent variables,  is the size of data point 

sets, 

T
lxxxx ],,,[ 21  N

y is the corresponding output,  is the Lagrange multiplier and b  is the bias term.  ia

In comparison with some other feasible kernel functions, the radial basis function (RBF) is selected as 
kernel function due to its good features [9]. We employ kernel function with the form  

)exp(),( 22  ii xxxxK                                                       (11) 

The width of kernel   is a positive real constant. There are only two additional parameters to be tuned 
  and , which determine the trade-off between minimizing the training errors and minimizing the model 

complexity. If   and  parameters are selected as finite candidate tuning sets, k -folds cross validation is a 

popular technique for certain optimization parameters ),(  [6]. However, the prediction error accuracy of 
this trial may not be satisfied. For improving the generalization performance and prediction accuracy, an 
adaptive optimizing parameter method is proposed. The test prediction error of this trial can be calculated by 
the following equation:  





N
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1

2)]()([
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                                                         (12) 

where  is the mean square error,  and  are the prediction and actual value respectively, is 
the size of the test subsets.  

MSE )(iy )(if N

 

Fig. 4: LSSVM model structure.   

Suppose averaged set of l  training data points  by , where  denotes the n 

dimension input space of the sample and has a corresponding target value 

l
iii yx 1},{  k n

i Rx 
Ryi   for . l,,2,1 i  0 is 

satisfaction , MSE min  is minimum  for every certainMSE ),(  , is the training steps, maxL max is the 

maximum of , and max is the maximum of  . The proposed adaptive parameter optimization procedure 

for LSSVM is described as follows: 

Step 1: Input ,l
iii yx 1},{  0 , k , max , max , ,maxL 0L . 

Step 2: . 1 LL

Step 3:  Cross combination ),( ji   
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Step 4: - folds cross validation for certain parametersk ),( ji  . 

Step 5: Go to step 3 until it has implemented )1()1(  LL  generations. 

Step 6: Calculate )1()1(,,1(minmin  LLii  , reserve min and corresponding ),(  . 

Step 7: If 0min    and , go to step 3. LL max

Step 8: Obtain certain optimizing parameters ),(  . 

Finally, the LSSVM model of adaptive optimizing parameters is set up for penetration depth prediction 
in underwater FCAW. 

5. Results and Verification  
In the underwater FCAW experiment, welding current, arc voltage, travel speed, CTWD, and weld pool 

width are selected as input units. Because of heat inertia, the currently and three-before time welding current, 
arc voltage and weld pool width are all obtained as inputs [10].  Finally, the total 14 input units are 

),3(),2(),1(),(),3(),2(),1(),(  tUtUtUtUtItItItI )3(),2(),1(),(  tWtWtWtW , 

and . Meanwhile, the one output is penetration depth . )(tS )(tH P )(t

                 Table 1 Compare the prediction performance between BPNN and LSSVM.  

Prediction model MSE MaxAE MeanAE CTT  (s) 

BPNN 0.010 0.34 0.07 2457.26 

LSSVM 0.003 0.40 0.03 1125.70 

In this study, cross validation is averaged by four, is 50,000, maxL 0 of MSE is 0.004, max is 1000, and 

is 100. Using adaptive optimizing parameter method, the optimization parameters (2
max ), are obtained. 

Given the original data point sets, the LSSVM model is established. The test prediction error of validation 
data point sets and modelling time are listed in table 1. The MaxAE (Maximum Absolute Error) and the 

(Mean Absolute Error) are calculated by following equations: MeanAE
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where ,  and are the same as (5). The  is the modelling time. In addition, the BPNN model 

is introduced to compare the performance of this LSSVM model. The non-linear activation function of 
BPNN is the sigmoid function 

)(iy )(if N CTT
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                                                                 (15) 

The optimized BPNN structure is 14-12-1 three layers network. The BPNN algorithm with momentum 
is chosen as algorithm of gradient method, and the training rate is 0.5, the momentum factor is 0.3 [10]. For 
the same original data point sets, cross validation is also averaged by four, and the training steps are 50,000 
to confirm BPNN parameters.  In order to compare the performance of prediction model, the test prediction 
error of validation data point sets and modelling time are also listed in table 1. Moreover, the error curves of 
the prediction and actual value for validation data point sets are shown in fig.5 to compare prediction 
precision between LSSVM and BPNN.  
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Fig. 5: Prediction error results of penetration depth.   

Except  for LSSVM model in table 1, the other results of test prediction error are all better and 
the modelling time is less than BPNN model. Also, prediction error of LSSVM is usually less than BPNN in 
fig.5. Because of strong non-linear characteristics, a lot of training data samples must be required to establish 
BPNN model in underwater FCAW. Fewer training data will cause neutral network learning not enough. But 
the LSSVM algorithm is suitable for small data samples learning. Further more, the prediction error accuracy 
is assured and the complexity of computation is reduced by the proposed adaptive optimizing parameter 
method. Compared with BPNN, the identification precision and modelling efficiency are all improved. 

MaxAE

6. Conclusion  
        Represented by weld penetration depth, the weld quality is successfully detected with LSSVM model in 
underwater FCAW. In order to evaluate the penetration depth, the effects of underwater welding process 
variables on penetration depth and weld pool width are analyzed. The parameters   and  of LSSVM are 
adaptively optimized to avoiding the unsatisfied prediction error accuracy. As a result, the depth of 
penetration can be detected effectively. Experimental analysis proves that this model can obtain higher 
prediction performance and is more suitable for penetration depth detection than BPNN in underwater 
FCAW. 
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