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Abstract. S. S. Siddiqi and A. Nadeem [A proof of the smoothness of the 6-point interpolatory scheme, 
International Journal of Computer Mathematics, 83(5-6), 503-509, 2006] proved that Weissman's 6-point 

subdivision scheme is  for a particular value of parameter by means of Laurent polynomial method. In 

this work, we also use the same method to get  continuity of 6-point scheme over the parametric interval. 
The original interval (0.0, 0.0277) presented by Weissman for continuity is contained in the interval (0.0, 
0.0425] introduced in this article. 
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1. Introduction 
A subdivision curve, in the field of 2D and 3D computer graphics, is a method of representing a smooth 

curve via the specification of a coarser piecewise linear polygon. The smooth curve can be calculated from 
the coarse polygon as the limit of an iterative process of subdividing each edge into smaller edges that better 
approximate the smooth curve. Subdivision schemes are classified into two categories: interpolating and 
approximating. If the control points of the original polygon and the newly generated control points after 
subdivision are interpolated by the limit curve then scheme is called interpolating otherwise it is called 
approximating. 

Dyn et al. [1] introduced 4-point interpolating subdivision scheme and proved that scheme is  by 
means of eigenanalysis. Youchun et al. [5] used the Laurent polynomial to obtain the same result. Weissman 

[4] introduced a 6-point interpolating scheme which gives  limit function over the parametric interval 

(0.0, 0.02). Siddiqi and Nadeem [3] have shown that smoothness of the 6-point scheme is  for particular 
value of parameter (i.e. 0.02) by means of Laurent polynomial method. In this article, we also take advantage 

of Laurent polynomial method to get  continuity of the 6-point subdivision scheme over the parametric 
interval (0.0, 0.0425]. The original parametric interval for continuity presented by Weissman is subset of the 
interval introduced in our work. 
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2. Preliminaries 

A general compact form of univariate subdivision scheme  which maps a polygon S   Zi
k

i
k ff  to a 

refined polygon   Zi
k

i
k ff 

  11  is defined by  
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where the set of coefficients is called the mask of the subdivision scheme. A necessary 

condition for the uniform convergence of subdivision scheme (2.1) is that 

 Ziaa i  : 
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For the analysis of subdivision scheme with mask a , it is very practical to consider the transform of the 
mask 

z





Zi

i
i zaza ,)(                      (2.3) 

which is usually called the symbol/Laurent polynomial of the scheme. From (2.2) and (2.3) the Laurent 
polynomial of a convergent subdivision scheme satisfies 

     0)1( a     and   2)1( a .               (2.4) 

This condition guarantees the existence of a related subdivision scheme for the divided differences of the 

original control points and the existence of associated , which can defined as follows:  )()1( za

).(
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  

The subdivision scheme  with symbol , is related to scheme S  with symbol by the 
following theorem. 

1S )()1( za )(za

Theorem 2.1. [2] Let S denote a subdivision scheme with Laurent polynomial  satisfying (2.2). Then 

there exist a subdivision scheme  with the property  

)(za

1S
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where  and  Furthermore, S is a uniformly 

convergent if and only if  
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1  converges uniformly to zero function for all initial data , in the sense that 0f
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A scheme  satisfying (2.5) for all initial data  is termed contractive. By Theorem 2.1, the 

convergence of S  is equivalent to checking whether  is contractive, which is then equivalent to checking 

whether

1S 0f

1S

  112
1 S



L
, for some integer L > 0. 

Since there are two rules for computing the values at next refinement level, one with even coefficients of 
the mask and one with odd coefficients of the mask, we define the norm 
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Theorem 2.2 [2] Let   ),()( 2
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3. The smoothness analysis of 6-point scheme 

The Laurent polynomial of finite mask of Weissman's 6-point scheme S is 

)()1()( 1
1 zzzza   ,                                          (3.1) 
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From (2.6) for L = n = 1 and (3.1), we have 
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For continuity of S, we require that the Laurent polynomial  satisfy (2.4), which it does, and 0C )(za
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for -0.10416 0.06250. Therefore  w 12
1 S  is contractive. Hence by Theorem 2.1, S  is . 0C

By (3.2) the Laurent polynomial of scheme 12
1 S  can be written as 
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Utilizing (2.6) for n = 2 & L = 1 and (3.3), we get 
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Now for  continuity we first need  to satisfy (2.4), which it does, and for first integer value of L > 

0 for which 
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Therefore 22

1
S  is contractive. Hence by Theorem 2.2, S is . Now from (3.4) the Laurent polynomial of 
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1C

22

1
S  is 

)()1(4)( 3
1)2( zzzza   ,              (3.5) 

where 

212345
3 3

16

1
3

16

3

16

3

16

1
33)(  






 






 






 






  wzwzwzwzwzwwzwzz . 

With the choice of n = 3 & L = 1, we have the following from (2.6) and (3.5) 
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For  continuity, we require that  satisfy (2.4), which is incidentally true, and also for first 

integer value of L > 0 for which 
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Therefore 32
1 S  is contractive. Hence by Theorem 2.2, S is . Now from (3.6) the Laurent polynomial of 
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In [4], it is shown that 6-point interpolatory subdivision scheme is  continuous over the interval 
[0.0139, 0.0143]. 
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Remark 3.1. To get optimal range of parameter w for 2C  continuity, we compute the inequality 







L
1 < 


S32

1 for L = 3, 4, . . . , 8 and get following ranges: 

0.0 < w  0.0362, 0.0 < w  0.0406, 0.0 < w     0.0404, 0.0 < w   0.0418, 0.0 < w   0.0417 & 0.0 < 
  0.0425 for L =3, 4, 5, 6, 7 & 8 respectively. Computation of above inequality needs the evaluation of 

2
L

 inequalities over the parametric interval. It takes nearly 128 hours to calculate parametric range for w at 
L = 8 on a 2.4 Ghz Core 2 Duo computer. For computing range of parameter w at L = 9 requires evaluation 
of 512 inequalities (with each inequality contains modulus values of atleast six different polynomials of 
degree nine), which create computational complexity in computations. But from above computed ranges one 
can easily conclude that there will be no significant improvement in the parametric interval f 9 . Hence 

the nearly optimal range of parametric interval f 2C  continuity is 0.0 <  

 

o

w 

r

or w

 L
    0.0425.  

Theorem 3.1. The 6-point Weissman [5] interpolatory subdivision scheme is  over the parametric 

interval (0.0, 0.0425] and  over [0.0139, 0.0143]. 
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Remark 3.2. Theorem 3.1 of Siddiqi and Nadeem [3] is special case of our Theorem 3.1. It is also noted that 

the original parametric interval (0.0, 0.0277) for  continuity introduced by Weissman is smaller than the 
one presented by us. 

2C

4. References 
[1] N. Dyn, D. Levin, J. A. Gregory. A 4-point interpolatory subdivision scheme for curve design. Computer Aided 

Geometric Design. 1987, 4: 257-268. 

[2] N. Dyn. Interpolatory subdivision schemes and analysis of convergence and smoothness by the formalism of 
Laurent polynomials, in: A. Iske, E. Quak, M. S Floater (Eds). Tutorials on Multiresolution in Geometric 
Modeling. Springer. 2002, pp. 51-68 (Chapter 2 and 3).  

[3] S. S. Siddiqi, A. Nadeem. A proof of the smoothness of the 6-point interpolatory scheme. International Journal of 
Computer Mathematics. 2006, 83(5-6): 503-509. 

[4] Sigalit Hed. Analysis of subdivision schemes for surface generation, M.Sc. thesis. Tel Aviv University, 1992. 

[5] A. Weissman. A 6-point interpolatory subdivision scheme for curve design, M. Sc. Thesis, Tel Aviv University, 
1990. 

JIC email for subscription: publishing@WAU.org.uk 



Ghulam Mustafa, et al: A Generalized Proof of the Smoothness of 6-Point Interpolatory Scheme 
 

JIC email for contribution: editor@jic.org.uk 

304

 of 4-point Deslauriers-Dubuc scheme. Journal 
of Applied Mathematics and Computing. 2005, 8(1-2): 553-562. 

[6] T. Youchun, K. P. Ko, B.-G. Lee. A new proof of the smoothness


