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Abstract.  In this paper, we give a full-Newton step primal-dual interior-point algorithm for monotone 
horizontal linear complementarity problem. The searching direction is obtained by modification of the classic 
Newton direction, and which also enjoys the quadratically convergent property in the small neighborhood of 

central path. The complexity bound is derived, which is 
0
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n
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1. Introduction  

A monotone horizontal linear complementarity problem (LCP) is to find a pair , nx s R  such that 

, 0, ,Mx Ns q xs x s    0.                                                        (1) 

where  and mq R , m nM N R  , moreover M  and have the column monotonic property, i.e., for any 

 

N

,u w nR

0 TMu Nw u w 0.                                                                 (2) 

The formulation (1) includes linear and convex quadratic programming problems expressed by their 
optimality conditions in their usual format. Properties of this formulation are described in [1], where the rank 

 has been proved under the monotonic hypothesis.  [ , ]r M N n

There are a variety of solution approaches for LCP which have been studied intensively. Among them, 
the interior-point methods (IPMs) gained much attention than other methods. Due to the close connection 
between LCP and linear and convex quadratic programming problems, some IPMs for linear and convex 
quadratic programming problems have been extended to LCP. For instance, Gonzaga et al. [2,3] studied the 
largest step path following algorithm for LCP and showed that the fast convergence of the simplified largest 
step path following algorithm. Huang et al. [4] proposed a high-order feasible IPM for LCP 

with
0

logn



 

 

 iterations. Monteiro et al. [5] studied the limiting behavior of the derivatives of certain 

trajectories associated with the monotone LCP. Zhang [6] presented a class of infeasible IPMs for LCP and 

showed that the algorithm has 2 1
logn


 
 



                                                          

 under some mild assumptions. Some other relevant references 

can be found in [4,7,8]. 

In this paper, we give a full-Newton step IPM for LCP, the algorithm uses a modified Newton direction, 
which enjoys the nice property of quadratically convergent in the small neighborhood of central path. We 
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derive the complexity bound for the algorithm, and the complexity result is the best-known for LCP. 

The paper is organized as follows: In Section 2, the basic concepts of IPMs are given, which include 
central path and the classic Newton direction. In section 3, we give a scaled version of the classic Newton 
direction, and from which we give a modified Newton direction. The generic algorithm is described in 
section 4. In section 5, the properties of full-Newton step are analyzed, which include the estimation of the 
upper bound for dual gap and the increase of the proximity after one full-Newton step, the decrease of 
proximity after the parameter update is also given in this section. At the end of this section, we give a 
complexity result for the full-Newton step IPM. Section 6 gives a simple numerical example. Section 7 ends 
the paper with a conclusion. 

Some notations used throughout the paper are as follows.   and 

  denotes the 2-norm and  -norm 

of a vector respectively. For any  1 2, , ,
T n

nx x x x R   min, x  denotes the smallest value of the 

components of x  and xs  denotes the componentwise (or Hadamard) product of the vectors x  and . s

2. Preliminary 
We assume the following hypotheses hold: the existence of an interior feasible solution and the existence 

of a strictly complementarity optimal solution. 

2.1. The central path 
The basic idea of the IPM is to replace the second equation in (1) by the parameterized equation xs e , 

with 0  . Thus we consider the system 

, , ,Mx Ns q xs e x s 0.                                                          (3) 

The parameterized system (3) has a unique solution for each 0  . This solution is denoted as 

    ,x s    and is called the  -center of LCP. The set of  -centers (with   running through all 

positive real numbers) gives a homotopy path, which is called the central path of LCP. If 0 
xs

, then the 

limit of the central path exists and since the limit points satisfy the complementarity condition 0 , the 
limit yields an optimal solution for LCP, see [6,9]. 

2.2. The classic Newton direction 
The search directions used in all primal-dual IPMs were computed from the linear system  

   
  
M x x N s s q

x x s s e
     

    
                                                      (4) 

Neglecting the quadratic term x s   in the left-hand side expression of the second equation, we obtain 
the so-called classic Newton direction x  and s . 

0M x N s

x s s x e xs
   
    

                                                            (5) 

The unique solution of the system (5) is guaranteed by Lemma 4.1 in [9]. 

3. New search direction 
To describe the ideas underlying this paper, we need to consider a scaled version of the system (5) that 

defines the search directions. 

3.1. A scaled-Newton direction 
Now we introduce the scaled vector v  and the scaled search directions xd  and sd  according to 

xs
v


  and x

v x
d

x


 , s

v s
d

s


                                                           (6) 

According to (6), the system (5) can be rewritten as 
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1

0x s

x s

Md Nd

d d v

 
v  

                                                              (7) 

where 
1M MV X , 1N NV S , ( )V diag v , ( )X diag x  and  ( )S diag s                        (8) 

The search directions xd  and sd   are obtained by solving (7), so x  and s  can be computed via (6).  

3.2. A modified Newton direction 
Rearrange the second equation in (7), we obtain 

 2
x sv v d d e    

taking square root at both side the equation, one has 

  
1

2 2
x sv v d d e    

Using Taylor series at , which gives the following equation 2v

 1

2 x sv d d e    

rearrange the above equation and substitute the second equation in (7), one obtain the new Newton system 


0

2
x s

x s

Md Nd

d d e v

 

  
                                                            (9) 

Once system (9) is solved, x and  can be computed via (6) too. s
It should be mentioned that the idea of equivalent algebraic transformation above was also proposed by 

[10]. There, the power transformation  t t  was focused on xs space. 

Moreover, we define a proximity measure to the central path by 

   , ;x s v e   v                                                             (10) 

Let us introduce the notation 

v x sp d d  ， v xq d ds   

then we have 

2
v v

x

p q
d


 ，

2
v

s
vp q

d


  and 
2 2

4
v v

x s

p q
d d


 .                                         (11) 

We compare the norm of vp  and  by the following lemma. vq

Lemma 3.1.One has 

v vq p . 

Proof: By the monotonicity property, see (2), one has 

0 0T T
x sM x N s x s d d          0.                                             (12) 

 Thus  

   2 2 2 24T T T
v x s x s x sq e d d e d d d d p      v , 

the result follows. 

4. Generic Primal-Dual IPMs for LCP 
We investigate a full-Newton step algorithm using the modified Newton direction. It is assumed that we 
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0are given a positive primal-dual pair  and such that 0 0,x s  0 0   0 0,x s  is close to the 0 -center in 

the sense of the proximity measure  0 0 0, ;x s  . 

 In the algorithm x  and  denote the modified Newton step, as defined before. s
                                                                                                                                                                          .                                                                                                                  

Generic primal-dual IPMs for LCP 

                                                                                                                                                                         . 

Input: 

A threshold parameter 0  ; an accuracy parameter 0  ; 

a fixed barrier update parameter : 0 1   . 

a strictly feasible  0 0,x s  and  0 0 0 /
T

x s n   such that  0 0 0, ;x s    

begin 
0 0: ; : ; :x x s s 0     

            while Tx s   do 

begin 

:x x x   ;   :s s s  

 : 1     

end 

       end 

                                                                                                                                                                          . 

5. Complexity analysis 
In this section, we derive the complexity bound for the IPM based on the modified Newton direction. 

5.1. Feasibility condition 
Lemma5.1. If , and denote  1v  x x x    and s s s   , then the iterate  ,x s   is strictly 

feasible.  

Proof: For each 0 1  , let introduce the notation  x x x     and  s s s    . Then we have 

       2x s x x x xs s x x s x s               , 

by (6), we obtain 

     2 2
x s x

x s
v v d d d d

 
 


    s  

Furthermore, from (11) we get 

       
2 2

2 2 21
4

v v
v

x s p q
v v vp

 
  




      

Using the second equation of (9) we find that 

 
2

22 22
4

v
v

p
v vp v v e e v e         

and this relation leads to 

       
2 2

21 1
4 4

v v
x s p q

v e
 

   


 
     

 
                                      (13) 
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Evidently, the inequality     0x s    is satisfied if 

 
2 2

1 1
4 4

v vp q 


    

Since 

       
2 2 2 2 2

1 1 1
4 4 4 4 4 4

v v v v v
2
vp q p q p     

  

       
q

                      (14) 

By Lemma 3.1, one has  

   
222 2

2
1 1

4 4 4 4
v vv v

p pp q
v       

1

                                       (15) 

Hence, for each 0   , we have     0x s   . Consequently, the sign of the continuous function of 

 ,  x   and  s   remains the same for every 0 1  . Hence  0 0x x   and  0 0s s   

yields  and x 1 0x   1s s 0 . This completes the proof. 

5.2. Dual gap 
In the following lemma, we analyze the effect of the full-Newton step on the dual gap. 

Lemma 5.2.Let x x   x s and . Then we have s s   

 Tx s n    

Proof: Observe that making the substitution 1   in (13) that equation becomes 
2

4
vqx s

e


 

                                                                       (16) 

and using this equation we obtain 

   
22

4 4

T
T vT T v

qe q
x s e x s e e n n     

  
             

. 

This implies the lemma. 

5.3. Quadratic convergence  
We first estimate the increase of the proximity after one full-Newton step. 

Theorem 5.3.Let  , ;x s      and
x s

v


 
  , If   1v  . Then 

2

21 1




 
 

. 

Hence, the full-Newton step is quadratically convergent. 

Proof. We deduce from Lemma 5.1 that the full-Newton step is strictly feasible, thus  and . 
Observe that by (16), we have  

0x  0s 

 
2

2

4
vq

v e                                                                       (17) 

Thus 
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2 22 2

2
min 1 1 1 1 1

4 4 4 4

v v v v
q q p p

v                                    (18) 

Furthermore, (17) and (18) lead to 

     
2

2 2
2

2 2
min

1 1

1 41 1 1 1
v

e v q
v e v

e v v


 


 

 


    

     
, 

the last inequality follows from the fact that 
2 22

v v vq q p   

Consequently, we have , and this implies the lemma.    2
v   v

5.4. Proximity changes after one iteration  
After the full-Newton step, a  -update will arise the changes of  -centre. We assume that   is 

reduced by the factor 1   in each iterate. 

Lemma 5.4.Let  and  , ; 1x s     1     , where 0 1  . We have 

 
  

2

2
, ;

1 1 1

n
x s

  
  

   


   
. 

Proof. From (17) and (18) we deduce 

 

   

     

  

2

22

2

2

2

, ;

11 1
1

1 1 1

1 1

4 41 1 min 1 1 1

,
1 1 1

vv

x s
x s e

e v
e v

e v

qq
e n

v

n

 





  

 
    

 

  

 
  










 

 
   

   

 
    
         




   



 

which completes the proof. 

5.5. Fixing the parameter 
We want to find a update parameter   and a threshold parameter . Thus, after each iterate of the 

algorithm the property  , ;x s    is maintained, and hence the algorithm is well defined. 

By Lemma 5.4, it suffices if 

  
2

21 1 1

n  
  




   
                                                    （19） 

The left side of the inequality (19) is monotonically increasing according to  , it certainly suffices if 

  
2

21 1 1

n  
  




   
                                                          (20) 
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At this state, if we set 
1

2
   and assume that , it suffices if 4n 

1/ 2 n                                                                          (21) 

that the inequality (20) certainly establish. Thus the full-Newton step interior-point algorithm well defined 
for LCP. 

5.6. Complexity bound 
Lemma 5.5.If the barrier parameter   has the initial value 0  and is repeatedly multiplied by  1  , with 

0 1  , then after at most 
01

log
n

 
 
 
 

 

iterations, we have Tx s  . 

Proof. At the initial point, one has  0 0T 0x s n , after one iterate, by Lemma 5.2, the dual gap 

   1 1 1
T 0x s n   , 

thus, after  iterates, the dual gap satisfies k

    01
T kk kx s n   . 

So, it suffices if  

  01
k

n    . 

Taking logarithm gives 

  0log 1 log log logk n      . 

Since 

 log 1     . 

It certainly suffices if  
0log log logk n      , 

this gives 
01

log
n

k


 
 , 

this completes the proof. 

The following theorem holds trivially. 

Theorem 5.6.Setting 
1

2
   and 1/ 2 n  , the initial dual gap is  0 0T 0x s n , the full-Newton step 

primal-dual IPMs for LCP has the complexity bound 
0

2 log
n

n



 
 
 

 

Proof. Substitute (21) in Lemma 5.5, the result follows. 

6. A simple numerical experiment  

 In general, though there exists  for the LCP problem is strictly feasible, we don't know the  0 0,x s  0
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value of   0 0,x s . Thus we should modify the system (5) as follows 

 
1

22

M x N s q Mx Ns

x s s x xs xs

     

     
 

                                                    (22) 

We consider the following example: 

0.0368 0.0188 0.0920 0.0211 0.0332 0.0162

0.0188 0.0393 0.0634 0.0176 0.0300 0.0248

0.0920 0.0634 0.4293 0.0617 0.1355 0.1124

0.0211 0.0176 0.0617 0.0203 0.0239 0.0107

0.0332 0.0300 0.1355 0.0239 0.0513 0.0480

0.0162 0.1248 0.0124 0.0107 0.0480 0.0824

 
 
 
 
 
 
 
  
 

,  

0.1630

0.2820

0.4500

0.3560

0.2420

0.2489

q

 
  
 

  
 
 
   

M 

N E and . 

Without loss of generality, we choose 0 0x s e  as the initial point. Setting  810 , 
1

2
   

and 1/ 2 n  . After 90 iterates, an optimal solution of the example is given by 

   * 0.4169,0.0000,0.0000,0.0000,4.4476,0.0000
T

x 

and 

 * 0.0000,0.4233,0.1910,0.4711,0.0000,0.4691
T

s  . 

7. Conclusions 
In this paper, we gave a full-Newton step IPM for LCP, the method has the quadratically convergent 

property in the small neighborhood of central path. The complexity bound is the best-known results for LCP. 

Although the simple numerical example shows that the algorithm approximates the optimal solution after 
finite number of iterations, from a practical perspective they are not efficient. This is because they always 
perform according to their worst-case theoretical complexity bounds. 

Our further research include to find an IPM for LCP with damped-Newton step and to get the same 
complexity bound as that with full-Newton step. 
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