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Abstract. In this article, we construct the exact solutions for nonlinear partial differential equations with
the variable coefficients in the mathematical physics via the generalized time- dependent variable
coefficients KdV-mKdV equation and the coupled modified KdV equations with non-uniformity terms by
using a generalized (G'/G) - expansion method with the variable coefficients, where G satisfies the
Jacobi elliptic equation. Many of the exact solutions in terms of Jacobi elliptic functions are obtained. The
proposed method is reliable and effective and gives more new exact solutions.
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1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated by many authors ( see for
example [1-36] ) who are interested in nonlinear physical phenomena. Many powerful different methods
have been presented by those authors. For integrable nonlinear differential equations, the inverse scattering
transform method [3], the Hirota method [8], the truncated Painleve expansion method [23,30], the Backlund
transform method [14,15] and the exp- function method [5,32] are used to find the exact solutions. Among
non-integrable nonlinear differential equations there is a wide class of equations that referred to as partially
integrable, because these equations become integrable for some values of their parameters. There are many
different methods used to find the exact solutions of these equations. The most famous algorithms are the
tanh- function method [1,7,33], the Jacobi elliptic function expansion method [6,11,13,26,27], F- expansion
method [2,18,31] and the generalized Riccati equation [17]. There are other methods which can be found in
[10,12,17-25].

Wang et.al.[22] have introduced a simple method which is called the (G'/ G )- expansion method to look
for traveling wave solutions of nonlinear evolution equations, where G = G(&) satisfies the second order

linear ordinary differential equation G"(£) + AG'(£) + uG(S) =0, where Aand g are arbitrary constants.

For further references see the articles [4,28,34,35]. Recently, Zayed [29] introduced an alternative approach,
which is called a generalized (G'/G)- expansion method, where G = G(&) satisfies the Jacobi elliptic

equation [G'(é‘)]2 = 82G4(§) + ele (&)+ep, £=x-Vt and ¢€y,e,e,,V are arbitrary constants
d
while '=——. The main objective of this article is using the generalized (G'/G )- expansion method with

the variable coefficients to construct the exact solutions for nonlinear evolution equations in the
mathematical physics via the generalized time- dependent variable coefficients KdV- mKdV equation and
the coupled modified KdV equations with non-uniformity terms, where G satisfies the Jacobi elliptic
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equation. Many exact solutions in terms of Jacobi elliptic functions are obtained.

2. Description of a generalized (G'/G)- expansion method with the variable
coefficients

Suppose we have the following nonlinear partial differential equation
F (U, U, Uy, Ugt ,Uyy Uyt o) =0, (2.1)
where u=u(x,t) is an unknown function, F is a polynomial in u=u(X,t) and its various partial

derivatives in which the highest order derivatives and nonlinear terms are involved. In the following we give
the main steps of a generalized (G'/ G )- expansion method

Step 1. Suppose the solution of Eq.(2.1) can be expressed by a polynomial in (G'/G ) as follows

n G'(é)ji
ug) = 2, aj (t)(— , 2.2)
Zo LG

where & = p(t)X+q(t) and ¢;(t)(1=0,1,2,..,n),p(t),q(t) are arbitrary functions of t to be determined
later while G = G(&) satisfies the following Jacobi elliptic equation:

G"(&) =26,G (&) +€,G(&) 23)

or

' 2 4 2
[G'(D)]" =exG () +e,G™ (&) +eo
and €;,€;,¢e( are arbitrary constants.
Step 2. The positive integer " n " can be determined by considering the homogeneous balance between

the highest order partial derivative and the nonlinear terms appearing in Eq. (2.1). Therefore, we can get the
value of n in (2.2).

Step 3. Substituting (2.2) into (2.1) with the conditions (2.4), we obtain polynomial in
x'(G'(&)! GK (&), (,j=0,1,k=0,£1,£2,...). Equating each coefficient of the resulted polynomial to
zero, yields a set of ordinary differential equations ¢ (t), (i =0,L,...,n), p(t)and q(t).

Step 4. Solving the obtained system of the differential equations with the aid of Maple or mathematica
to calculate ¢;j(t), (i=0,L,...,n), p(t) and q(t).

Step 5. Since the general solutions of Eq. (2.3) have been well known for us ( see Appendix A ), then
substituting a;j(t),(1=0,1,....,n), p(t),q(t)and the general solution of Eq. (2.3) into (2.2) we have many
new exact solutions of the nonlinear partial differential equation (2.1).

3. Some applications of the generalized (G'/G)- expansion method

In this section, we apply the generalized (G'/G) - expansion method with the variable coefficients to
construct the exact solutions for the generalized time- dependent variable coefficients KdV- mKdV equation
and the coupled modified KdV equations with non-uniformity terms which are very important nonlinear
evolution equations in mathematical physics.

Example 1. The generalized time- dependent variable coefficients KdV- mKdV equation
We start with the generalized time- dependent variable coefficients KdV- mKdV equation[16] in the
following form:

Uy —6fo(tuuy —6f1(t)u2ux + fo (DU — F3(DUy + F4()(AU+ XUy ) =0, (3.1)

where f(t), fy(t), f (1), f5(t), f4(t) are arbitrary functions of t and A is a constant. This equation

describes the propagation of weakly nonlinear waves in a KdV- typed medium that is characterized by a
varying dispersion and nonlinear coefficients. Suppose that the solution of Eq. (3.1) can be expressed by a
polynomial in (G'/G) as Eq.(2.2). Considering the homogeneous balance between the highest order

partial derivative Uyyy and the nonlinear term UUy in (3.1), we deduce that n = 2. Thus, the exact solution
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of Eq.(3.1) has the following form:

, 2 , 2
U(§)=sz(t)[%§))J +a1(t)(%f))j rag (), (32)

where & = p(t)x+q(t) and ¢;j(t),(i =0,1,2), p(t),q(t) are arbitrary functions of t to be determined later.
Substituting (3.2) along with Eq. (2.4) into (3.1) and collecting all terms with the same power of

x! (G'() Gk (&), (,j=0,1,k=0,£1,£2,...). Equating the coefficients of this polynomial to zero, we
get the following system of the ordinary differential equations:

30fa3esa; p=0,
6 flafeg p+36 flaoalazeg p+18 f0a1a2e3 p-6fro p3e(2, +60 f1a§e§e1a1 p=0,
dp
—a1eg— — f4a1peg =0,
180 5 ~ T491P8o
2 3 day _ dq
f4 AO{zeo +6 f10{0 appey + 6 flal €1 P&y +€p F +18 f0a1a260 pe; — o€ E +36 flaoalazeo pe;
+30 flazzegezal p+30 f10!22€12a1 peg + f30!1 peg + 6 foaoal peg -4 f20[1 p390€1 =0,

de,

dt

+ f,Aq, +%e] + f,Aa,e, =0,
—6facae,p-6fa,ae,p-30fa,eae p-36fa,anaepe, +e, % ~18f,a,a,€, pe,
—f,ae,p-6fajee,p+ f,Axe, —30fae e p+4f,a p’ee +age, ((jj—? =0,

dp
ae, EJF f,ae,p=0,
6f,a,p’e; —60faseeia p-6fa’e;p-36fa,aaep-18faaep=0,
-30f.alae,p=0;
~-12fajeip=0,
24f o aie;p-24faeep—12f,ajep+24f,a,e;p’ —24fa,ale;p=0,
24fa,00ee,p-6fale,p-12faiee,p—12falaelp+8f,a,plee,
~-12f,a .6, p—12fajee;p-2f.ae,p+2a,8, 3—? -12fajeelp-12fa,ale,p
241 a,0e,6,p =0,
2f,a,p+2a,8, % =0,

%+ f,Aa, =0,

12faep=0,
24f aleja, p+24faieie p+24fa,aep+12f,aie; p-24f,a,e0p’ =0,

-2a,8, % -2f,a,6,p=0,
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12faje’e,p+12fajece, p+6f,ale, p+12fa,a’e,p+12f,aree,p+2faep

dq

—8f,a,e.6p* +24faleae,p+12fa,a,e,p—2a,8, T 24f a,a5e.8,p (3.3)

+12fa,a5e,p = 0.
We can solve the above system (3.3) with the aid of Maple or Mathematica to obtain the following sets
of solutions:

Case 1.
a (1) = Ale_f fatbdt a;(t)=0, ag(t) = A3e—AI fa(dt
fo (DA e(2—A)j f4(t)dt )

q(t) = j{Alf (e faat | ¢ 2081 L apA o (te ™ f4(t)dt}dt f,(t)=0,

where f (1), f5(t), f4(t) are arbitrary functions of t and e, A, Ay, Ay are arbitrary constants.
Case 2.

a(t) = Ale_Af fa®dt ay(t) =0, ao(t) = Aq Ale—Aj fa (et
2(A-1)/ A
() = fLOA i g~ 2(A-D[ f4(ydt p(t) = Ay Al AT faddt
e (3.5)

fo(t) = -2 f; (1) Ay A~ A T4 At
q(t) = J'{AZAll/Af (e fadt _g_ +A2)A A CAHD At (yg=CAD] f4(t)dt}dt

where fy(t), f3(t), f4(t)are arbitrary functions of t and e, Aj, Ay, Ay are arbitrary constants.

Note that, there are other cases which are omitted here. Since the solutions obtained here are so many,
we just list some of the exact solutions corresponding to case 1 to illustrate the effectiveness of the
generalized (G'/ G )— expansion method with the variable coefficients. Substituting (3.4) into (3.2) yields

2
u(&) = Ae! f4(t)dt(G (f)J 4 A Al faddt .y
(&)=~ o) 5 3.6)
where
£=Axe! fa®d +I[Af (e~ 1408t L g ZRBL L p sp g )62 f4(t)dt}d 57)

According to the appendix A, we have the following families of exact solutions:
Family 1. If ey =1,e; = —(m2 +1),8, = m?, then we get

u(&) = Aed F40es2 (£ydn2 ()4 Age~A fa DAL (3.8)

or

u(&) = Al f4®dt g _ mz)zscz(cf)nd 2(&)+ Age~ Al Taat (3.9)
where &= Apxe| 400, [Af (tye~ ) F4 Ot | g A (m? +1)+ Ay 1A fo (e f4(t)dt}d

Family 2. If e :l—mz,el =2m? —-1,e =—m2, then we get
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u(&) = Aet 14 Ose2 (£)dn? (&) + Age™A T4, (3.10)
where &= Axe| 4O [ {Al f3(t)ed T4t 6[% Ay (2m? —1) + Aq JA; fo (e~ Taddt }dt.
Family 3. If ep = m? -1,e = 2—m2,e2 =—1, then we get
u(&) = Am*e ™ 140dtgq 2 (5yen2(£) 4+ Aje™A T4 AL G.11)
where &= Axe! 4O% L [ {Al f3(t)e! fa®dt | 6[% Ap(2—m?) + Aq]A o (t)e 2 falddt } dt.
Family 4. If ej=1- m2,e1 = 2—m2,e2 =1, then we get
u(&) = Ael 402 (5452 (£) + Age™A Ta DTt (3.12)
where &= Axe! 4O [ {Al f5(t)e ] f4®dt 6[% Ay (2—m?)+ Aq]A, o (t)e 2! faddt } dt.
Family 5. If ey =1,e; = 2m? -Le, = mz(m2 —1), then we get
u(&) = Ae) F4002 (£)cd 2 (£) + Aje™A T4 AL (3.13)
where &= Axe ! 4O% L [ {Al f5(t)e! fa®dt | 6[% Ay (2m? — 1)+ Ay ]A, fo(t)e 2 T4t } dt.

Family 6. If e =%,e1 =%(l—2m2),e2 =i, then we get

u(&) = Al f40dtgs2 () 4 pe=Al TadL (3.14)

where &= Apxe! 40, J.[Al f (el fa®at 6[2 Ao (1-2m%) + Ay 1A, fo e~ f4(t)dt}dt,

Family 7. If e :%(l—mz),el :%(Hmz),ez =i(1—m2), then we get
u(&) = Al F40dtge2 ()4 aje=Al fa(Ddt (3.15)

where &= Axe! 4OM L [ [Al f3(t)e] fa®dt | 6[% Ay (1+m?)+ Ay TA; fo(t)e 2 Tahdt } dt.

. m? 1. 5 1
Family 8. If g :T,el :E(m -2),e ZZ, then we get

u(&) = Am*e T faOdteg2 (=) pe=Al T4t (3.16)
where &= Axe” 405 ¢ | [Al fy(e ] 4O 6[% Ao (m? —2)+ Ag 1A fo (e f4mdt}dt_
2 2
Family 9. If ey = mTael = %(m2 -2),6y = mT, then we get
u(&) = Aet a2 () 1 pgeAl T4t (3.17)

where &= A xe ) f4Odt .f[Al 1:3(t)e_I fadt | 6[% A, (m2 -2)+ A31A fo(t)e—ZI f4(t)dt } dt.
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Similarly, we can write down the other families of exact solutions of Eq. (3.1) which are omitted for
convenience.

Example 2. The coupled modified KdV equations with non-uniformity terms
In this section, we study the coupled modified KdV equations with non-uniformity terms, which is a case
of non- isospectral coupled system [36] in the following form:

Ut +6C1oUVUy + Uyyy + U+ (a + fX)uy =0,

3.18
Vi +6C oUWy +Vyyy + AV + (a + Xy =0, G-18)
where C12 is a positive constant parameter while o and B are arbitrary constants parameters.
Suppose that the solutions of Egs. (3.18) can be expressed by polynomials in (G'/G) as follows
n
G'©))
u@) =2 ailt )( (3.19)
,Za G(<9)
and
i
G'()
V(&) =2 At )( (3.20)
z G(<S)

where & = p(t)x+q(t) and «;(t),S;M)1= 0,1,2,..,n),p(t),q(t) are arbitrary functions of t to be
determined later. Considering the homogeneous balance between the highest order partial derivatives Uyyy

or Vyyyx with the nonlinear terms UVUy or UVVy in (3.18) respectively, we deduce that n+m=2.
Suppose that n = m =1, hence the exact solutions
to Eqgs. (3.18) can be expressed as:

ué) =« (t)( G((:f))J +a (1), (3.21)
and
_ G'($)
V(&) =5 (t)( () j + o (1), (3:22)

where  B1(1), a1(t) , ap(t) and Sy(t) are arbitrary functions of t. Substituting (3.21) and (3.22) along

with Eq. (2.4) into (3.18). Collecting all terms with the same power of X! (G'(¥) Ik &) ,
(1,]=0,1,k =0,£1,£2,...) and setting each coefficients of this polynomial to zero, we get a system of

ordinary differential equations which can be solved by Maple or Mathematica. Thus we obtain the two sets
of solutions as:

Casel.
- - C,Csy _
o) =Cse /Y, ap(t)=Cre A =-=22eA,
1
C - f—
p(t):ic—3w/C12C1Cze A Bo(t)=Cre A, (3.23)
1
2 2
) =+ 33 Cec, |2eCiC ap 2C08CCs s @ p |, o
ct B 38 i
Case 2.
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oy (t)=Cpe 7, Bit)=Cre A,
p(t) =F,/-Cy,C,Cre A,

(3.24)
q(t) = £/~ C1,C,C, {—%e—m —%e_ﬂt} Cs.

Po(t) = ao(t) =0,
where Cy,C,,Czand C4 are arbitrary constants.

Note that, there are other cases which are omitted here. Since the solutions obtained here are so many,
we just list some of the exact solutions corresponding to case 1 to illustrate the effectiveness of the
generalized (G'/ G )— expansion method with the variable coefficients.

Substituting (3.23) into (3.21) and (3.22) yield

U(§)=C3e_ﬂt[((5;((§))}cle_ﬂt, (3.25)
and
CCs —a[G'(©) "y

== C 3.26
v(¢) c, e [G(f) +Cre 77, (3.26)

where

2 2
é::i%ﬂClzClCze_ﬂtXiC—§1/C12C1C2 |:6C12C1 Cz 3;C12€1C2C3 8_3’& +%e_ﬂt +C4(3.27)
1 Ci

According to the appendix A, we have the following families of exact solutions:

Family 1. If ey =1,6; = —(m2 +1),8y = m?, then we get

u(¢) = Cse Pes(&)dn(£) +Cre 2,

and
W§) =2 e Pes(&) dn(é) + Coe A, (3.28)
N 1
u(&) =—(1-m*)Cse Psc(&)nd(£) + Cre A,
and
V(&) = %e‘%c(@ nd(&) +Cre A, (3.29)
where 1

6C12C[Cy +2C1,CyC3 (M? +1) L
3p

C _ C
é::ic—31/C12C1C29 ﬂXiC_;W/CIZClCZ
1
1

o
+—€ +C4. (330)
B

Family 2. If e :l—mz,el =2m? -1,e =—m2, then we get

u(g) = —Cse Asc(&)dn(&) + Cre A,

and

V(&) = Céﬁe‘ﬁ‘sc(@ dn(&)+Cre A, (3.31)
1
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Where

C _
§=i€31/C]201C29 ﬁXigg,/C12C1C2
1

1

6C1 2C12 Cz - 2C1 2C2C§ (2m2
3p

1
)¢ +Z)e—ﬁt +Cy. (332)

Family 3. If eg = m? -1, = 2—m2, €y, =—1, then we get
u(&) =-m*Cze Msd(&)en(&) + Cre A,

and

V(&) = %e‘/ﬁsd (&)en(E)+Cre A, (3.33)

1
Where

C C 6C;,C2C, —2C;,C,C2(2—m?

gzig,/C12C1C2e_ﬂxicz,/C12C102 B ;;CZ 3 )e_3ﬂ+2e_ﬂ 1Cy (334
1

1

Family 4. If g =1—m2,e1 =2—m2, e, =1, then we get
u(¢) =-Cze nc(&)ds(é) + Cre A,
and

V(&) = Céﬁe‘/”‘ nc(&)ds(&) + Ce A, (3.35)
1

Where

Cs a4 G
§=i€1/C12C1C29 ﬂXiCZﬂC12C1C2

1 1

6Cy 2C12 C, -2G 2C2C32 2-m?)

Sﬂ e A %A lic, (336)

Family 5. If ey =1, =2m? -1, e, = m2(m2 —1), then we get

u(¢) = Cse Mns(&)cd (&) + Cre A,

and
V(&) = —Cé—?e_ﬂtns(f) cd(£) +Cre A, (3.37)
Where
‘5=i§? e 2 oS 6C,C/C; —2C;12C2C32(2m2 D _3n +;e—/i +Cy (339)
1
Family 6. If e :%,el :%(I—Zmz), €y :%, then we get

u(é) =Cse Mds(£)+Cre A,
and
CyCs3
1

V(&) ==+ e Mds(£)+Cre ™2, (3.39)

where
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C . C 6C;,C2C,) —C,C,C2(1-2m?) B
g:tci,/clzclcze /*xicg,/clzclc2 e ;;Cz 3 g A +;e Alic, (3.40)
1

Family 7. If e =%(1—m2),e1 :%(Hmz), e :%(l—mz), then we get

u(&) = +Cye Ade(£)+Cce A,

and
V(&) =F Céc3 e_mdc(§)+C2e‘ﬁ[, (3.41)
1
Where
6C;,C2C, —Ci,C,C2(1+m?
§=iCC:3,/C12C1C2€_ﬂXiC?2’1/C12C1C2 12712 31; 2 3( )e_3'a +ge_ﬂ +C4. (3.42)
1 C
1
m? 1 5 1
Family 8. If e =T,el :E(m -2), € :Z, then we get
u(é) = 7Cze Ples(&)+Cre A,
and
V(&) =+ (2: 3 e Pes(e)+Cre A, (3.43)
1
Where
6C C 2C, _C,C C m? -2
é::i%,/Clzcl(be_'aXi&,/ClchCz 12 2 = ( ) 3ﬁ+ e_ﬂ +C4 (3.44)
G Cl2 3p B
2 2
Family 9. If e :mTael :%(mz -2), e :mT, then we get
u(&) =FiCye Adn(&)+ce A,
and
CoCs - i
V(&) =+ —=— C dn($)+Cre 7, (3.45)
1
Where
6C{,C2Cy —C;,C,C2(m? —2
g:i%1/clzclc2e‘ﬂXiC—;,/clzclc2 1271 2 31; 25" ~2) 34 +%,e‘ﬁt +Cy. (3.46)
1 C
1
Appendix A

The general solutions to the Jacobi elliptic equation (2.3) and its derivatives ( see for example
[3,9,13,29] ) are listed as follows:
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12 Khaled A. Gepreel: Exact Solutions for Nonlinear PDEs with the Variable Coefficients in Mathematical Physics

e e, e G($) G'($)
1 ~(1+m?) m? S(e)ered(S) | en(g)dn(&) or— (1-m?)sd(£)nd (&)
1—m?2 m2 1 —m2 cn(é) —sn(&)dn(&)
m? -1 2-m? -1 dn(¢) —m?sn(&)en(&)
m” —(1+m?) : NS(S)orde() | — ds(&)es(£)or(1-m?)ne(£)se(£)
—m? m? —1 1—-m?2 nc(s) sc(&)dc($)
-1 2—m? m? 1 nd($) m2sd(&)cd (&)
1—m?2 7 —m?2 1 cs(&) —ns(&)ds(&)
1 2—m2 1—m?2 sc(¢) nc($)de(&)
1 m2 1 mz(mz 1) sd(&) nd(£)cd (&)
mz(mz 1) m? -1 1 ds(¢) —cs(&)ns(&)
% %(l —om?) % ns(&) = cs($) —ds(&)es($) F ns(£)ds(S)
%(l—mz) %(1+m2) %(l_mz) nc($) +sc($) sc(&)de(£) £ ne(£)de(S)
m? %(mz _2) % ns($) £ ds(S) —ds(&)es($) Fes(EHns(S)
4
m? l(mz 2 m? sn($) ticn($) cn($)dn($) Fisn(&)dn(S)
4 2 4
where 0 < m <1 is the modulus of the Jacobi elliptic functions and 1 = J-1.
Appendix B

sn(&), en(&), dn(&), ns(&), cs(&), ds(E), sc(E) ,sd(E)  generate  into

hyperbolic functions when m — 1as follows:

The Jacobi elliptic functions

sn(&) — tanh(&) cn(&) — sech(&) dn(&) — sech(&) ns(&) — coth(é)
cs(&) > esch(é) ds(&) = csch(é) sc(&) — sinh(&) sd(&) — sinh (&)
and into trigonometric functions when m — 0as follows:
sn(&) — sin(é) cn(&) — cos(§) dn(¢é) > 1 ns(&) — csc($)
cs(&) = cot (&) ds(&) — csc(&) sc(&) — tan(&) sd(&) — sin (&)
Appendix C
_cen(8) _dn(¢) _ 1 _ 1
O @) T @ " @) G
_en@) _sn(é) () _dn(&)
cs(§) = (&) sc($) = on (&) sd(&) an(®) ds(&) ()

4. Conclusions

The main idea of the generalized (G'/G )- expansion method with variable coefficients is that the exact
solutions of nonlinear partial differential equations can be expressed as a polynomial in (G'/G), where
G(&) satisfies the Jacobi elliptic equation (2.3) instead of the standard technique used by Wang et al. [22] to

some nonlinear PDEs in mathematical physics via the generalized time- dependent variable coefficients
KdV- mKdV equation and the coupled modified KdV equations with non-uniformity terms. We have
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obtained families of exact solutions of these equations in terms of Jacobi elliptic functions. Finally, we
conclude according to the appendix B that our results in terms of Jacobi elliptic functions generate into
hyperbolic functions when m — 1 and generate into trigonometric functions when m — 0.
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