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Abstract. In this article a new preconditioner from class of (I+S)-type based on the Modified Accelerated 
Overrelaxation(MAOR) iterative method has been introduced and convergence properties of the proposed 
method have been analyzed and compared with the some other preconditioners. Moreover, comparisons 
between different splittings are derived. Numerical example is also given to illustrate our results. 
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1. Introduction 
Science history indicates that substantial improvements and huge jumps in science and technology 

require interaction between mathematicians with different scientists. Meanwhile, solving linear equation 
system play the role of a catalyst for further connection of this interaction between mathematics and sciences.  

Consider the following linear system 

                                                    AX=b                                                                    (1.1) 
Where  and  is an nonsingular matrix of the following block form nRXb , A R n n
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Also D1,D2 are nonsingular diagonal matrices of orders n1 and n2 respectively and 21 nnRH  , 12 nnRK  . 
For any splitting, A=M-N with det(M) ≠0, the basic iterative methods for solving(1.1) is  

,2,11)(1)1(   tbMNXMX tt

                                        (1.3) 
This iterative process converges to the unique solution  for any initial vector value  

if and only if the spectral radius  ,where  M

bAX 1 nRX 0

1)( 1  NM -1N is called the iterative matrix. There are some 
specifically iterative methods for solving a linear system (1.1)  based on (1.3).see[1].  

Modified Overrelaxation methods are also above model .These methods have been discussed and used   
by many researchers; see [1-7]. Let the matrix A have the splitting A=D

 
-CL-Cu=D(I-L-U),where L = D-1CL , 

U = D-1Cu, D = diag(A), CL and Cu are strictly lower and upper triangular matrices of A, respectively.  The 
modified accelerated Overrelaxation (MAOR) method defined by [4] is  
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With iterative matrix 
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With                    
    ),(),,( 22112211 IIdiagIwIwdiag                                         (1.7) 

Where 2121 ,,, ww  are positive real parameters and I1,I2 are identity matrix of orders n1 and n2 
respectively. Darvishi et al. in [8] studied preconditioned MAOR method for linear systems based on 
preconditioners of class (I+S)-type (For details, we refer to [9-21]). They proposed following splitting of A 
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Where  
                                                      (1.9) 22
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*
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They assume that  
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Also they presented following preconditioners PofA, 

Where  

                       )( SDP                                                               (1.11) 
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And

                                                        
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,...,2,1, 2,

3 (1.15)

 Moreover, they showed that the preconditioned matrix 

  PAA                                                                   (1.16) 
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Can be decomposed by following splitting  

                                                   
3,2,1 iCCDA

ii UL                                          
  (1.17) 

Where   

                                                   













































HsD

HD
C

DIsK
C

DD

i

U

i
L

i

i

*
2

*
1

*
11

0

0)(

00

                                              

 (1.18) 

And similar to (1.4), preconditioned MAOR (PMAOR) iterative method defined as 
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In this paper, we present alternative splitting of A, A  and propose a new preconditioner of A. also, we 
prove that our splitting and preconditioner compare with the above splitting and preconditioners works better. 
Numerical example is also reported to confirm our convergence analysis. 

2. Prerequisite 

We begin with some basic notation and preliminary results which we refer to later. 

Definition 2.1 [22-23 ]. 

(a) A matrix A =   is called a Z-matrix if for any  ija , 0iji j a   

(b) A Z-matrix is an L-matrix ,if   a >0  
 
 ii   

(c) A Z-matrix is an M-matrix, if A is nonsingular, and   .1 0A 
 

Definition 2.2[22-23 ].Let A be a real matrix. The splitting A=M-N  is called
 

(a) Convergent if ρ ( 1M N )<1  

(b) Regular if   and    1 0M   0N 

(c) Weak regular if   and 1 0M   1M N  ≥0  

Clearly, a regular splitting is weak regular. 

Lemma 2.1(Varga [22]).let A=M1-N1=M2-N2 be two regular splittings of A , where A-1≥0.If 

,then   012  NN 1)()(0 2
1

21
1

1   NMNM 
Lemma2.2 (Berman and Pelemmons [23]).Let A be a Z-matrix. Then A is M-matrix if and only if there is 
a positive vector X such that AX>0 . 

Lemma 2.3 ([24-25]) let A, B are Z-matrix and A is an M-matrix, if A≤B then B is an M-matrix too.  

Lemma2.4(Varga [22]) Let A=M1-N1=M2-N2 be two regular splittings of A, where A-1≥ 0.If 

,Then . 1
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1
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Lemma2.5([25-26]) If A ≥ 0, then 

(1) A has a nonnegative real eigenvalue equal to its spectral radius, 

( )A(2) To > 0, there corresponds an eigenvector x ≥ 0, 

(3) ( )A  does not decrease when any entry of A is increased. 

Lemma2.6(Berman and Pelemmons [23]) 

Let T ≥ 0 . If there exist X > 0 and a scalar    > 0 such that 

(1) XTX  ,then  )(T  . Moreover, if  XTX   , then  )(T . 

(2) XTX  ,then  )(T  . Moreover, if XTX  , then  )(T . 

3. Theoretical Analysis 
In the following we will compare standard splitting with splitting of(1.8).  

To solve linear system (1.1) we consider the following splitting 
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Following Theorem indicate that standard splitting for A is the best. 

Theorem 3.1.   let  ,  be the iterative matrices of the MAOR method by splittings of(1.3)and (1.8) , 

respectively. If A in (1.1) is an M-matrix and conditions of (1.9),(1.10) are satisfied. Then we have   
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     Therefore by Lemma2.1 we obtain finishes the proof of theorem.

   Now, we consider following splitting for preconditioned matrix A  and show that our splitting is better 
than splitting (1.18). 
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Where are diagonal, strictly lower and strictly Upper triangular parts of , respectively. 111 ,, uld Hsi

 And 
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Theorem 3.2.   let  
 ,

 , 
 ,

  be the iterative matrices of the PMAOR method by splittings of(1.17)and 
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MM   

Since A  is an M-matrix by Lemma 2.3 MM , are M-matrix too. 
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Now, we will propose alternative preconditioner P̂  of A   
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Where are diagonal, strictly lower and strictly upper triangular parts of 222 ,, uld  ,respectively. 

Also, for our preconditioned matrix we have the following splitting 
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Here ,we prove that our preconditioner compare with the Darvishi et al’s preconditioners work better 
point of view spectral radius.  

Theorem 3.3.   let  )(
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Since 11ˆ   MM  we have; 
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 Therefore by lemma 2.6 the proof is completed.  

4. Numerical example 
 In this section, we give an example to illustrate the results obtained in previous Sections. 

Example.[see(8,Example1)]The coefficient matrix A of is given by  
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If we apply all the last methods for A and compute the spectral radius in each case ,we have the 
following results.  

In the Table1, we reported the spectral radius of the MAOR method with different splittings.    

Also  are, spectral radius of iteration matrix with splitting (1.3),(1.8) ,respectively. 21, 
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In the Table2, we reported the spectral radius of the PMAOR method with different splittings.  
also  ,  are ,spectral radius of iteration matrix with splitting(1.17),(3.2)   ,respectively.

 In the Table3, we reported the spectral radius of the PMAOR method with different preconditioners 

and our splitting. Also , , and1 2 3   are ,spectral radius of iteration matrix with preconditioners 

(1.13),(1.14),(1.15)and(3.4) ,respectively.( 2 ) 

From the tables, we can see that our splittings are superior to the Darvishi et al.’s splittings     and our 
preconditioner is better than other preconditioners.   

5. Conclusions 
In this paper, we have proposed a new preconditioner from class of (I+S)-type based on the MAOR 

iterative method.  We have studied how the iterative method is affected if the system is preconditioned by 
our model. Also we let the coefficient matrix of linear system be Z-matrices, M- matrices that often occur in 
a wide variety of sciences. Finally, from theoretical speaking and numerical example, it is may be concluded 
that the convergence rate of our proposed methods are superior to the basic iterative methods and better than 
the some preconditioner of (I+S)-type.     
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Table1     The spectral radius of  the MAOR method with two different splittings  

                    1                       2              MAOR                 w               w                 21 2  
                          0.8913        0.9273            0.8842           0.8501            0.6143 
                          0.9213        0.9773            0.3442           0.8606            0.7011     
                          0.9462        0.9751            0.8649           0.8422            0.5969 

Table2     The spectral radius of  the PMAOR method with two different splittings 

PMAOR                        w1              w2                  2                                        
Preconditioner                        
   S1                    3/2        0.8913        0.9273          0.8842         0.8494         0.6112 
                          3/2        0.9213        0.9773           0.3442        0.8597         0.6989 
                           2          0.9462        0.9751           0.8649        0.8416         0.5945 

Table3     The spectral radius of the PMAOR method with two different splittings and 2  

  w1               w2             2                  1                2                                    3       
0.7032       0.8720      0.8722         0.6892       0.6738       0.6832                0.3331 
0.7408       0.9856      0.4976         0.7219       0.7065       0.7159                0.3356 
0.8913       0.9273      0.8842         0.6120       0.5946       0.6050                0.2869   
0.9213       0.9773      0.3442         0.6994       0.6835       0.6931                0.3664   
0.9462       0.9751      0.8649         0.5945       0.5762       0.5872                0.2567 
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