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Abstract. This paper is concerned with analysis problem for the global exponential stability of a class of
recurrent neural networks (RNNs) with mixed discrete and distributed delays. We give the sufficient
condition of global exponential stability of cellular neural network with mixed discrete and distributed delays
by employing the Lyapunov-Krasovskii functional and Young inequality, in addition, the example is
provided to illustrate the applicability of the result.
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1. Introduction

Cellular neural network (CNN) has become a new discipline branch since the Chua and Yang of
California University proposed the CNN in 1988. The main function of CNN is about to change an input
image into a corresponding output image, in order to accomplish this feature, we must first concern the
stability of system. The various generalizations of neural networks have attracted attention of the scientific
community due to their promising potential for tasks of classification, associative memory, parallel
computation and the ability to difficult optimization [1-5]. Such applications rely on the existence of
equilibrium points and the qualitative properties of neural networks. The time delay is commonly existed in
various engineering systems such as chemical processes, hydraulic and rolling mill systems, etc[6-10]. These
effects are unavoidably existed in the implementation of neural networks, and may cause undesirable
dynamic network behaviors such as oscillation and instability. Therefore, it is important to investigate the
stability of delayed neural networks. The stability analysis of neural networks plays an important role in the
designs and applications. A large number of the criteria on the stability of neural networks have been derived
in the literature. Neural network usually has a spatial nature due to the presence of various parallel pathways
with a variety of axon sizes and lengths, so it is desirable to model them by introducing unbounded delays
[11-15]. Thus, there will be a distribution of conduction velocities along these pathways and a distribution of
propagation delays. In recent years there has been a growing research interest in study of neural networks
with distributed delays. In fact, both discrete and distributed delays should be taken into account when
modeling a realistic neural network [16-20]. Based on the above discussions, we consider a class of mixed
discrete and distributed delays cellular neural network described by a neutral integro-differential equation.
The main purpose of this paper is to study the global exponential stability for neutral-type delayed neural
networks with unbounded distributed delays. The paper is organized as follows: In Section 2, System
Description and Preli minaries are stated and some definitions and lemmas are listed. Based on the Lyapunov
stability theory and Young inequality, theorems and corollary about global exponential stability of multi-
delay and distributed delay cellular neural network in Section 3. We give the conclusion of this paper in
Section 4.

2. Problem formulation

Consider the following multi-delay and distributed delay cellular neural network model:
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where ¢;(6) is bounded and continuous in the sub [0,0), » is the number of the neurons in the neural
network, , the constants a;, b; and c¢; denote, respectively, the connection weights, the discretely delayed
connection weights and the distributively delayed connection weighted, of the jth neuron on the / neuron. x;(¢)
denotes the state of the ith neural neuron at time ¢, f;(x;(£)), g;(x;(¢)) and h;(x;(¢)) are the activation functions
of the jth neuron at time ¢, /, is the external bias on the ith neuron, d;, denotes the rate with which the ith
neuron will reset its potential to the resting state in isolation when disconnected from the network and
external inputs. 7; > 0 is a bounded time-varying delay, the kernel function K;: [0,00)—[0,0) is continuous

in the sub[0,0), and satisfies j: Ki]. (s)ds=1,i,j=1,2,...,n , the initial situation is xij(6)= ¢&(H),
p=max(t;(?)), -p<6<0.
Definition 1. x: (i=1,2,...,n)is the equilibrium point of (2.1) associated with a given /; (i=1,2,...,n) is

said to be globally exponentially stable, if there are positive constants £ > Oand g > Osuch that every solution
x: (i=1,2,...,n) of (2.1) satisfies as follows
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Definition 2. V §(6) & C([p,0], R") , we definite

|¢| = max {||¢(l9)|| 0 e[-p, O]} ,then we can get as follows

.
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Assumption 1. (Al) Fori =1,2,...,n, the neuron activation functions in (2.1) satisfy
)= <a; &)=, < B [s, =s |1 (s) =Dy (5] <7}
where o, 3/, | are constants.

Assumption 2. (A2)
The neuron activation functions f;(x;(?)), g;(x;(1)), #;(x;(¢)) j =1,2,...,n are bounded.
Lemma 1 [21] (Rogers-Holder Inequality)

S, =5, |, , 5, —5,|, Vs, #S,

if p >1,l+l=1,and a, >0,b,>0(k=12,...,n), Then
P q
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I 1
Lemma 2 [22] (Young Inequality) if e>0,2>0,P > 1,;+— =1, then we can get
q

1 1 1 -1.-5
eh<—el +—p =— gt 4 P i
P q P p
3. Main results and proofs
Theorm 3.1. f,,g;,h, are Lipschitz continuous and 7,(#)<0 , if there are constants
Py @y Gys s My Jislis Py Qs Pys J sl Py € R(1=1,2,..,n), @, >0,r 21 (when r =1, we must let

Qg =n; =h;=j, =l =p;=q,=n,=h,=j,=l,=p,=1),
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Then, the equilibrium point of multi-delay and distributed delay cellular neural network x* is global
exponential stability.

Proof. We shift the equilibrium point x™ = (x,, X, ,... ,x:)T of (2.1) to the equation
u(t) = x(t) =x" =[u,(0),u, (1), .., u, (O]

Thus we can get as follows
() =~du(0)+ D _a, f7 @, (O)+) byl (=7, +D ¢ LOK,-j (t—=$)h; (u;(s))ds (3.1
J=1 J=1 J=1

where
7 0 0) = 1,045~ £,05), 5 0, 0) = 0,0+ ) = ),
R (uy(0) = hy(u, (O + %)) = h(x),

We design the following Lyapunov functional

V(u,t)= Z o, {|u,. )| e + z"“\bij \h
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By (3.1), we calculate the Dini upper right derivative of the solution V (u, f),
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Then, the equilibrium point of multi-delay and distributed delay cellular neural network x* is global
exponential stability.

Proof. If we design the Lyapunov functional as follows
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This proof is similar to the proof of Theorem 3, we can easily derive the result. Its proof is
straightforward and hence omitted.
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4. Conclusion

A new sufficient condition is derived to guarantee the global exponential stability of the equilibrium
point for cellular neural network with multi-delay and distributed delay. Comparing with traditional methods,
this approach is effective.
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