

The Least Squares Solutions of Bisymmetric Matrix for Inverse Quadratic Eigenvalue Problem

Xiangrong Wang⁺, Chenggang Chen, Shimin Wan, Yandong Yuan

Department of Fundamental Subject, Tianjin Institute of Urban Construction, Tianjin, 300384, China

(Received January 1, 2010, accepted March 22, 2010)

Abstract. The inverse eigenvalue problem of constructing bisymmetric matrices M, C and K of size n for the quadratic pencil $Q(\Lambda) = MX\Lambda^2 + CX\Lambda + KX$ so that has a prescribed subset of eigenvalues and eigenvectors is discussed. A general expression of solution to the problem is provided. The set of such solutions is denoted by S_L . The optimal approximation problem associated with S_L is posed, that is: to find the nearest triple matrix $[\hat{M}, \hat{C}, \hat{K}]$ from S_L . The existence and uniqueness of the optimal approximation problem is discussed and the expression is provided for the nearest triple matrix.

Keywords: bisymmetric matrix, matrix equation, quadratic eigenvalue, inverse problem, SVD.

1. Introduction

Let $R^{n\times n}$ denote the set of $n\times n$ real matrices. $SR^{n\times n}$ denote the set of $n\times n$ real symmetric matrices. $ASR^{n\times n}$ be the set of $n\times n$ real anti-symmetric matrices, R^n denote the set of n dimensional vector. A^T is the transpose of matrix A. I_n is $n\times n$ unit matrix, $\| \bullet \|$ is Frobenius norm, $\| \bullet \|_2$ is 2-norm. e_i be i-th row of the unit matrix I_n . Let A be a real $m\times n$ matrix and let B be real $p\times q$ matrix. Then the Kronecker product of matrices A and B is defined as

$$A \otimes B := \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}. \tag{1}$$

That is, $A \otimes B$ is the $mp \times nq$ matrix formed all possible pairwise element products of A and B. If we let $vec(X) \in R^{mn}$ be the vector formed by the columns of a permutation matrix $X \in R^{m \times n}$.

Definition^[1]. Let
$$A = (a_{ij})_{n \times n}$$
, $a_1 = (a_{11}, a_{21}, \dots, a_{n1})$, $a_2 = (a_{22}, a_{32}, \dots, a_{n2})$, \dots ,

 $a_{n-1} = (a_{(n-1)(n-1)}, a_{n(n-1)}), a_n = (a_{nn})$. Then we denote $vec_s(A)$ as follow

$$vec_{S}(A) := (a_{1}, a_{2}, \cdots, a_{n-1}, a_{n})^{T} \in R^{\frac{n(n+1)}{2}}.$$
 (2)

Definition^[2]. $A = (a_{ij}) \in R^{n \times n}$ is termed bisymmetric matrix, if

$$a_{ij} = a_{ji} = a_{n-j+1,n-i+1}, i, j=1, 2, \dots, n$$
 (3)

Let
$$G = \{ [X,Y,Z] / X \in BSR^{n \times n}, Y \in BSR^{n \times n}, Z \in BSR^{n \times n} \}$$
.

In this paper, we discuss the following problems:

Problem I. Given matrices $X \in \mathbb{R}^{n \times p}$, $\Lambda \in \mathbb{R}^{p \times p}$, find $[\tilde{M}, \tilde{C}, \tilde{K}] \in G$ such that

⁺ Corresponding author. Tel.: +86-022-23085200. *E-mail address*: ydyuan196@sina.com.

$$\|\tilde{M}X\Lambda^{2} + \tilde{C}X\Lambda + \tilde{K}X\| = \min_{[M,C,K] \in G} \|MX\Lambda^{2} + CX\Lambda + KX\|$$
(4)

where ||•|| is Frobenius norm.

Let $\tilde{G} = \{ [M, C, K] | || MX \Lambda^2 + CX \Lambda + KX || = \min, [M, C, K] \in G \}.$

Problem II. Find $[\tilde{M}, \tilde{C}, \tilde{K}] \in \tilde{G}$, such that

$$\|\tilde{M}\|^{2} + \|\tilde{C}\|^{2} + \|\tilde{K}\|^{2} = \min_{[M,C,K] \in \tilde{G}} (\|M\|^{2} + \|C\|^{2} + \|K\|^{2})$$
(5)

where ||•|| is Frobenius norm.

2. The Solution Problem I

Lemma 1^[1]. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, then the sufficiency and necessary condition of the solution exist for linear equation Ax = b as follow

$$AA^+b=b. (6)$$

the general solution for linear equation Ax = b can write as follow

$$x = A^{+}b + (I - A^{+}A)\tau, (7)$$

where $\tau \in R^n$.

Lemma 2^[1]. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, then the least squares solution of incompatibility linear equation Ax = b can write as follow

$$x = A^{+}b + (I - A^{+}A)\tau, (8)$$

where $\tau \in R^n$.

For any k of positive integer, let

$$D_{2k} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & S_k \\ S_k & -I_k \end{pmatrix}, \ D_{2k+1} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & O & S_k \\ O & \sqrt{2} & O \\ S_k & O & -I_k \end{pmatrix},$$
(9)

where $S_k = (e_k, e_{k-1}, \dots, e_2, e_1)$.

We easy know, for any positive integer n, have $D_n^T D_n = I_n$, $D_n^T = D_n$, then D_n is symmetric orthogonal matrix.

Lemma 3^[2]. For any n is odd number or even number, the sufficiency and necessary condition of $n \times n$ real matrix being bisymmetric matrix is

$$X = D_n \begin{pmatrix} X_1 & O \\ O & X_2 \end{pmatrix} D_n, \tag{10}$$

where $X_1 \in SR^{(n-k)\times (n-k)}$, $X_2 \in SR^{k\times k}$, $k=\left[\frac{n}{2}\right]$, D_n as (9) .

Lemma 4^[2]. Given matrix $X \in \mathbb{R}^{n \times n}$, then the sufficiency and necessary condition for $X \in S\mathbb{R}^{n \times n}$ as follow

$$vec(X) = \Gamma_n vec_s(X) \tag{11}$$

where $vec_{S}(X) \in R^{\frac{n(n+1)}{2}}$ by (2) to present,

where e_i be i row of the unit matrix I_n , $\Gamma_n \in R^{n^2 \times \frac{n(n+1)}{2}}$.

Lemma 5^[9]. Given matrices $X,Y,Z \in R^{n \times m}$, $F \in R^{m \times n}$, then matrix equation AX + BY + CZ = F has solution for $[A,B,C] \in G$ condition as follow

$$NN^{+}vec(F) = vec(F). \tag{13}$$

where $N = (P_1, P_2, P_3)$, $P_1 = (X^T \otimes I)\Gamma_n$, $P_2 = (Y^T \otimes I)\Gamma_n$, $P_3 = (Z^T \otimes I)\Gamma_n$.

If matrix equation of AX+BY+CZ=F has solution for $[A,B,C] \in G$, the set of solutions can write as follow

$$S_{L} = \left\{ [X, Y, Z] \middle| \begin{pmatrix} vec(X) \\ vec(Y) \\ vec(Z) \end{pmatrix} = \Omega[N^{+}vec(F) + (I - N^{+}N)\tau] \right\}, \tag{14}$$

where $\Omega = diag(\Gamma_n, \Gamma_n, \Gamma_n)$, $N = (P_1, P_2, P_3)$, $P_1 = (X^T \otimes I)\Gamma_n$, $P_2 = (Y^T \otimes I)\Gamma_n$, $P_3 = (Z^T \otimes I)\Gamma_n$, $\tau \in R^{3n^2}$.

When F=0, the matrix equation AX+BY+CZ=0 always has solution for $[A,B,C] \in G$, and the solution can write as follow

$$S'_{L} = \left\{ [X, Y, Z] \middle| \begin{pmatrix} vec(X) \\ vec(Y) \\ vec(Z) \end{pmatrix} = M(I - N^{+}N)\tau \right\}$$

$$(15)$$

where

$$\tau = [I - [M(I - N^{+}N)]^{+} [M(I - N^{+}N)]]\varsigma, \ \varsigma \in \mathbb{R}^{n^{2}}.$$
(16)

Theorem 1. Given matrices $X \in R^{n \times p}$, $\Lambda \in R^{p \times p}$, let

$$D_n^T X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \tag{17}$$

where $X_1 \in C^{k \times p}$, $X_2 \in C^{(n-k) \times p}$. Then, the solution for matrix equation (1) can write as follow:

$$M = D_n \begin{bmatrix} M_1 & O \\ O & M_2 \end{bmatrix} D_n, C = D_n \begin{bmatrix} C_1 & O \\ O & C_2 \end{bmatrix} D_n, K = D_n \begin{bmatrix} K_1 & O \\ O & K_2 \end{bmatrix} D_n, \tag{18}$$

where

$$\begin{bmatrix} vec(M_1) \\ vec(C_1) \\ vec(K_1) \end{bmatrix} = \Omega_1(I_1 - N_1^{\dagger} N_1) \tau_1, \begin{bmatrix} vec(M_2) \\ vec(C_2) \\ vec(K_2) \end{bmatrix} = \Omega_2(I_2 - N_2^{\dagger} N_2) \tau_2, \tag{19}$$

$$\begin{split} & \Omega_{\!\!\!1} = \! \! d\!i\!a\!g\!(\Gamma_{\!n\!-\!k},\!\Gamma_{\!n\!-\!k},\!\Gamma_{\!n\!-\!k}), \;\; \Omega_{\!\!\!2} = d\!i\!a\!g\,(\Gamma_{\!\!\!k},\!\Gamma_{\!\!\!k},\!\Gamma_{\!\!\!k}) \;, \;\; N_{\!\!\!1} = \! (P_{\!\!\!1},\!P_{\!\!\!2},\!P_{\!\!3}) \;, \;\; N_{\!\!\!2} = \! (Q_{\!\!\!1},\!Q_{\!\!\!2},\!Q_{\!\!\!3}) \;, \; P_{\!\!\!1} = \! ((X_{\!\!\!1}\Lambda^2)^T \otimes I_k) \Gamma_k \;, \\ & P_{\!\!\!2} = \! ((X_{\!\!\!1}\Lambda)^T \otimes I_{n\!-\!k}) \Gamma_{n\!-\!k} \;\;, \quad P_{\!\!\!3} = \! (X_{\!\!\!1}^T \otimes I_{n\!-\!k}) \Gamma_{n\!-\!k} \;\;, \quad Q_{\!\!\!1} = \! ((X_{\!\!\!2}\Lambda^2)^T \otimes I_k) \Gamma_k \;\;, \quad Q_{\!\!\!2} = \! ((X_{\!\!\!2}\Lambda)^T \otimes I_k) \Gamma_k \;\;, \\ & Q_{\!\!\!3} = \! (X_{\!\!\!2}^T \otimes I_k) \Gamma_k \;, \tau_1 \in R^{3(n-k)^2} \;\; \text{and} \;\; \tau_2 \in R^{3k^2} \;\; \text{are any vector.} \;\; I_k \; \text{is} \;\; k \times k \;\; \text{unit matrix}, \;\; I_{n\!-\!k} \;\; \text{is} \;\; (n\!-\!k) \times (n\!-\!k) \;\; \text{unit matrix}. \end{split}$$

Proof. By Lemma 1 and (9), we have easily matrix equation (1) equivalence with

$$D_{n}\begin{bmatrix} M_{1} & O \\ O & M_{2} \end{bmatrix} \begin{bmatrix} X_{1}\Lambda^{2} \\ X_{2}\Lambda^{2} \end{bmatrix} + D_{n}\begin{bmatrix} C_{1} & O \\ O & C_{2} \end{bmatrix} \begin{bmatrix} X_{1}\Lambda \\ X_{2}\Lambda \end{bmatrix} + D_{n}\begin{bmatrix} K_{1} & O \\ O & K_{2} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = 0$$

$$(20)$$

where $M_1, C_1, K_1 \in R^{(n-k)\times (n-k)}, M_2, C_2, K_2 \in \in R^{k\times k}$.

By matrix computation, matrix equation (20) equivalence with

$$M_1 X_1 \Lambda^2 + C_1 X_1 \Lambda + K_1 X_1 = 0$$
, and $M_2 X_2 \Lambda^2 + C_2 X_2 \Lambda + K_2 X_2 = 0$. (21)

Then, matrix equation (21) equivalence with

$$I_{n-k}M_1X_1\Lambda^2 + I_{n-k}C_1X_1\Lambda + I_{n-k}K_1X_1 = 0, \text{ and } I_kM_2X_2\Lambda^2 + I_kC_2X_2\Lambda + I_kK_2X_2 = 0.$$
 (22)

By the Kronecker product of matrices, (22) equivalence with

$$[(X_1 \Lambda^2)^T \otimes I_{n-k}] vec(M_1) + [(X_1 \Lambda)^T \otimes I_{n-k}] vec(C_1) + (X_1^T \otimes I_{n-k}) vec(K_1) = 0,$$
(23)

and

$$[(X_2\Lambda^2)^T \otimes I_{\scriptscriptstyle k}] vec(M_2) + [(X_2\Lambda)^T \otimes I_{\scriptscriptstyle k}] vec(C_2) + (X_2^T \otimes I_{\scriptscriptstyle k}) vec(K_2) = 0.$$
(24)

Let

$$\begin{split} &\Omega_{\!\!\!\!1} = \! diag(\Gamma_{\!n\!-\!k},\!\Gamma_{\!n\!-\!k},\!\Gamma_{\!n\!-\!k}) \;,\;\; \Omega_{\!\!\!\!2} = \! diag(\Gamma_{\!\!\!k},\!\Gamma_{\!\!\!k},\!\Gamma_{\!\!\!k}) \;,\;\; N_{\!\!\!\!1} = (P_{\!\!\!1},\!P_{\!\!2},\!P_{\!\!3}) \;,\;\; N_{\!\!\!2} = (Q_{\!\!\!1},\!Q_{\!\!2},\!Q_{\!\!3}) \;,\;\; P_{\!\!\!1} = ((X_{\!\!\!1}\Lambda^2)^T \otimes I_{n\!-\!k})\Gamma_{n\!-\!k} \;\;,\\ &P_{\!\!\!2} = ((X_{\!\!\!1}\Lambda)^T \otimes I_{n\!-\!k})\Gamma_{n\!-\!k} \;\;,\;\; P_{\!\!\!3} = (X_{\!\!\!1}^T \otimes I_{n\!-\!k})\Gamma_{n\!-\!k} \;\;,\;\; Q_{\!\!\!1} = ((X_{\!\!\!2}\Lambda^2)^T \otimes I_{k})\Gamma_{k} \;\;,\;\; Q_{\!\!\!2} = ((X_{\!\!\!2}\Lambda)^T \otimes I_{k})\Gamma_{k} \;\;,\\ &Q_{\!\!\!3} = (X_{\!\!\!3}^T \otimes I_{k})\Gamma_{k} \;\;. \end{split}$$

Therefore, by Lemma 4, the solution of matrix equation (23) and (24) is having, and the general solution can write as (18) and (19).

3. The Solution Problem II

Theorem 2. Given matrices $X \in \mathbb{R}^{n \times p}$, $\Lambda \in \mathbb{R}^{p \times p}$, the solution exist of Problem II and can write as follow

$$M = D_n \begin{bmatrix} M_1 & O \\ O & M_2 \end{bmatrix} D_n, C = D_n \begin{bmatrix} C_1 & O \\ O & C_2 \end{bmatrix} D_n, K = D_n \begin{bmatrix} K_1 & O \\ O & K_2 \end{bmatrix} D_n, \tag{25}$$

where

$$\begin{bmatrix} vec(M_1) \\ vec(C_1) \\ vec(K_1) \end{bmatrix} = \Omega_1(I_1 - N_1^+ N_1) \tau_1, \begin{bmatrix} vec(M_2) \\ vec(C_2) \\ vec(K_2) \end{bmatrix} = \Omega_2(I_2 - N_2^+ N_2) \tau_2, \tag{26}$$

$$\begin{split} \tilde{\tau}_1 = & \Big(I - (\Omega_1(I - N_1^+ N_1))^+ (\Omega_1(I - N_1^+ N_1)) \Big) \mu_1, \ \ \tilde{\tau}_2 = & \Big(I - (\Omega_2(I - N_2^+ N_2))^+ (\Omega_2(I - N_2^+ N_2)) \Big) \mu_2, \ \mu_1 \in R^{(n-k)^2} \\ \text{and} \ \ \mu_2 \in R^{k^2} \ \ \text{are any vector.} \end{split}$$

Proof. By (18) and (19), we have

$$\min_{[M,C,K] \in S} (||M||^2 + ||C||^2 + ||K||^2)$$

$$= \min_{[M,C,K] \in \mathcal{S}} (||D_n \begin{bmatrix} M_1 & O \\ O & M_2 \end{bmatrix} D_n ||^2 + ||D_n \begin{bmatrix} C_1 & O \\ O & C_2 \end{bmatrix} D_n ||^2 + ||D_n \begin{bmatrix} K_1 & O \\ O & K_2 \end{bmatrix} D_n ||^2)$$

$$= \min_{[M,C,K] \in S} ((\|M_1\|^2 + \|C_1\|^2 + \|K_1\|^2) + (\|M_2\|^2 + \|C_2\|^2 + \|K_2\|^2))$$

$$= \min_{[M,C,K] \in S} (||M_1||^2 + ||C_1||^2 + ||K_1||^2) + \min_{[M,C,K] \in S} (||M_2||^2 + ||C_2||^2 + ||K_2||^2)$$

$$= \min_{[M_1, C_1, K_1] \in \tilde{G}_1} \left\| \begin{pmatrix} vec(M_1) \\ vec(C_1) \\ vec(K_1) \end{pmatrix} \right\|_{2}^{2} + \min_{[M_2, C_2, K_2] \in \tilde{G}_2} \left\| \begin{pmatrix} vec(M_2) \\ vec(C_2) \\ vec(K_2) \end{pmatrix} \right\|_{2}^{2}$$

$$= \min_{\tau_1} \left\| \Omega_1 (I - N_1^+ N_1) \tau_1 \right\|_2^2 + \min_{\tau_2} \left\| \Omega_2 (I - N_2^+ N_2) \tau_2 \right\|_2^2$$

Thereby, $\min_{M \in K \mid e \le N} (||M||^2 + ||C||^2 + ||K||^2)$ equivalence with

$$\min_{\tau} \left\| \Omega_1 (I - N_1^+ N_1) \tau_1 \right\|_{2}^{2} \text{ and } \min \left\| \Omega_2 (I - N_2^+ N_2) \tau_2 \right\|_{2}^{2}$$
(27)

By Lemma 1 and Lemma 2, we have the solution of

$$\min_{\tau} \left\| \Omega_1 (I - N_1^+ N_1) \tau_1 \right\|_2^2 \tag{28}$$

as follow

$$\tilde{\tau}_{1} = \left(I - (\Omega_{1}(I - N_{1}^{+}N_{1}))^{+}(\Omega_{1}(I - N_{1}^{+}N_{1}))\right)\mu_{1},\tag{29}$$

where $\mu_1 \in R^{(n-k)^2}$ is any vector.

The solution of

$$\min_{\tau} \left\| \Omega_2 (I - N_2^{\dagger} N_2) \tau_2 \right\|_2^2 \tag{30}$$

as follow

$$\tilde{\tau}_2 = \left(I - (\Omega_2(I - N_2^+ N_2))^+ (\Omega_2(I - N_2^+ N_2))\right) \mu_2, \tag{31}$$

where $\mu_2 \in \mathbb{R}^{k^2}$ is any vector.

By (18), (19), (29) and (31), we easy know the solution of Problem II present by (25) and (26).

Theorem 3. Given matrices $X \in R^{n \times p}$, $\Lambda \in R^{p \times p}$, $M^* \in R^{n \times n}$, $C^* \in R^{n \times n}$, $K^* \in R^{n \times n}$

Let

$$D_{n}M^{*}D_{n} = \begin{bmatrix} M_{11}^{*} & M_{12}^{*} \\ M_{21}^{*} & M_{22}^{*} \end{bmatrix}, D_{n}C^{*}D_{n} = \begin{bmatrix} C_{11}^{*} & C_{12}^{*} \\ C_{21}^{*} & C_{22}^{*} \end{bmatrix}, D_{n}K^{*}D_{n} = \begin{bmatrix} K_{11}^{*} & K_{12}^{*} \\ K_{21}^{*} & K_{22}^{*} \end{bmatrix}.$$
(32)

Then, the solution for

$$\|\widehat{M} - M^*\|^2 + \|\widehat{C} - C^*\|^2 + \|\widehat{K} - K^*\|^2 = \min_{[M, K] \in S} (\|M - M^*\|^2 + \|C - C^*\|^2 + \|K - K^*\|^2)$$
(33)

can write as follow

$$\widehat{M} = D_n \begin{bmatrix} \widehat{M}_1 & O \\ O & \widehat{M}_2 \end{bmatrix} D_n, \widehat{C} = D_n \begin{bmatrix} \widehat{C}_1 & O \\ O & \widehat{C}_2 \end{bmatrix} D_n, \widehat{K} = D_n \begin{bmatrix} \widehat{K}_1 & O \\ O & \widehat{K}_2 \end{bmatrix} D_n,$$
(34)

where

$$\begin{pmatrix} vec(\tilde{M}_{1}) \\ vec(\tilde{C}_{1}) \\ vec(\tilde{K}_{1}) \end{pmatrix} = \Omega_{1}(I - N_{1}^{+}N_{1})\tilde{\tau}_{1}, \quad \begin{pmatrix} vec(\tilde{M}_{2}) \\ vec(\tilde{C}_{2}) \\ vec(\tilde{K}_{2}) \end{pmatrix} = \Omega_{2}(I - N_{2}^{+}N_{2})\tilde{\tau}_{2}, \tag{35}$$

$$\tilde{\tau}_{1} = \tilde{\tau}_{0} + \left(I - (\Omega_{1}(I - N_{1}^{+}N_{1}))^{+}(\Omega_{1}(I - N_{1}^{+}N_{1}))\right)\mu_{1}, \quad \tilde{\tau}_{0} = (\Omega_{1}(I - N_{1}^{+}N_{1}))^{+}y_{0}, \quad y_{0} = \begin{pmatrix} vec(M_{11}^{*}) \\ vec(C_{11}^{*}) \\ vec(K_{11}^{*}) \end{pmatrix}, \quad \mu_{1} \in R^{(n-k)^{2}} \text{ is any vector,}$$

$$\tilde{\tau}_2 = \tilde{\tau}_{00} + \left(I - (\Omega_2(I - N_2^+ N_2))^+ (\Omega_2(I - N_2^+ N_2))\right) \mu_2, \quad \tilde{\tau}_{00} = (\Omega_2(I - N_2^+ N_2))^+ y_{00}, \quad y_{00} = \begin{pmatrix} vec(M_{22}^*) \\ vec(C_{22}^*) \\ vec(K_{22}^*) \end{pmatrix}, \quad \mu_2 \in \mathbb{R}^{k^2} \text{ is any vector.}$$

Proof. By (24) and (31), we have

$$||M-M^*||^2 + ||C-C^*||^2 + ||K-K^*||^2$$

$$\begin{split} &= \|D_{n} \begin{bmatrix} M_{1} & O \\ O & M_{2} \end{bmatrix} D_{n} - D_{n} M^{*} D_{n} \|^{2} + \|\begin{bmatrix} C_{1} & O \\ O & C_{2} \end{bmatrix} - D_{n} C^{*} D_{n} \|^{2} + \|\begin{bmatrix} K_{1} & O \\ O & K_{2} \end{bmatrix} - D_{n} K^{*} D_{n} \|^{2} \\ &= \|\begin{bmatrix} M_{1} & O \\ O & M_{2} \end{bmatrix} - \begin{bmatrix} M_{11}^{*} & M_{12}^{*} \\ M_{21}^{*} & M_{22}^{*} \end{bmatrix} \|^{2} + \|\begin{bmatrix} C_{1} & O \\ O & C_{2} \end{bmatrix} - \begin{bmatrix} C_{11}^{*} & C_{12}^{*} \\ C_{21}^{*} & C_{22}^{*} \end{bmatrix} \|^{2} + \|\begin{bmatrix} K_{1} & O \\ O & K_{2} \end{bmatrix} - \begin{bmatrix} K_{11}^{*} & K_{12}^{*} \\ K_{21}^{*} & K_{22}^{*} \end{bmatrix} \|^{2} \\ &= \|\begin{bmatrix} M_{1} - M_{11}^{*} & -M_{12}^{*} \\ -M_{21}^{*} & M_{2} - M_{22}^{*} \end{bmatrix} \|^{2} + \|\begin{bmatrix} C_{1} - C_{11}^{*} & -C_{12}^{*} \\ -C_{21}^{*} & C_{2} - C_{22}^{*} \end{bmatrix} \|^{2} + \|\begin{bmatrix} K_{1} - K_{11}^{*} & -K_{12}^{*} \\ -K_{21}^{*} & K_{2} - K_{22}^{*} \end{bmatrix} \|^{2} \\ &= (\|M_{1} - M_{11}^{*}\|^{2} + \|C_{1} - C_{11}^{*}\|^{2} + \|K_{1} - K_{11}^{*}\|^{2}) + (\|M_{2} - M_{22}^{*}\|^{2} + \|K_{2}^{*}\|^{2}) + (\|M_{2}^{*}\|^{2} + \|K_{21}^{*}\|^{2}) + (\|M_{21}^{*}\|^{2} + \|K_{21}^{*}\|^{2}) + (\|M_{21}^{*}\|^{2}) + (\|M_{21}^{*}\|^{2}) + (\|M_{21}^{*}\|^{2}) + (\|M_{21}^{*}\|^{2}) + (\|M_$$

Then, $\min_{[M,C,K] \in \tilde{G}} (\|M - M^*\|^2 + \|C - C^*\|^2 + \|K - K^*\|^2)$ equivalence with

$$\min_{[M_1, C_1, K_1] \in \tilde{G}_1} (\|M_1 - M_{11}^*\|^2 + \|C_1 - C_{11}^*\|^2 + \|K_1 - K_{11}^*\|^2)$$
(36)

and

$$\min_{[M_2, C_2, K_2] \in \tilde{G}_2} (\|M_2 - M_{22}^*\|^2 + \|C_2 - C_{22}^*\|^2 + \|K_2 - K_{22}^*\|^2)$$
(37)

For (35), we have

$$\min_{[M_1,C_1,K_1]\in \tilde{G}_1} (\|M_1-M_{11}^*\|^2 + \|C_1-C_{11}^*\|^2 + \|K_1-K_{11}^*\|^2)$$

$$= \min_{[M_1, C_1, K_1] \in \tilde{G}_1} \left\| \begin{pmatrix} vec(M_1) \\ vec(C_1) \\ vec(K_1) \end{pmatrix} - \begin{pmatrix} vec(M_{11}^*) \\ vec(C_{11}^*) \\ vec(K_{11}^*) \end{pmatrix} \right\|_2^2 = \min_{\tau_1} \left\| \Omega_1 (I - N_1^+ N_1) \tau_1 - \begin{pmatrix} vec(M_{11}^*) \\ vec(C_{11}^*) \\ vec(K_{11}^*) \end{pmatrix} \right\|_2^2$$

By Lemma 1 and Lemma 2, we have the solution of

$$\min_{[M_1, C_1, K_1] \in \tilde{G}_1} (||M_1 - M_{11}^*||^2 + ||C_1 - C_{11}^*||^2 + ||K_1 - K_{11}^*||^2)$$
(38)

as follow

$$\tilde{\tau}_{1} = \tilde{\tau}_{0} + \left(I - (\Omega_{1}(I - N_{1}^{+}N_{1}))^{+}(\Omega_{1}(I - N_{1}^{+}N_{1}))\right)\mu_{1},\tag{39}$$

where

$$\tilde{\tau}_0 = (\Omega_1 (I - N_1^+ N_1^-))^+ y_0^-, \quad y_0 = \begin{pmatrix} vec(M_{11}^*) \\ vec(C_{11}^*) \\ vec(K_{11}^*) \end{pmatrix}, \mu_1 \in R^{(n-k)^2} \text{ is any vector.}$$

Analogously, the solution of (36) can write as follow

$$\tilde{\tau}_2 = \tilde{\tau}_{00} + \left(I - (\Omega_2(I - N_2^+ N_2))^+ (\Omega_2(I - N_2^+ N_2))\right) \mu_2, \tag{40}$$

$$\text{where } \ \tilde{\tau}_{00} = (\Omega_2 (I - N_2^+ N_2^-))^+ \ y_{00} \ , \ \ y_{00} = \begin{pmatrix} vec(M_{22}^*) \\ vec(C_{22}^*) \\ vec(K_{22}^*) \end{pmatrix}, \ \mu_2 \in R^{k^2} \ \text{is any vector.}$$

By (25), (26), (37), (38), (39) and (40), we easy know the solution of (33) present by (34) and (35).

4. References

- [1] Dai H.. Matrix Theory. Science Press, 2001
- [2] Yuan S.F., Liao A.P., Lei Y.. Least Squares Symmetric Solution of the Matrix Equation AXB+CYD=E with the Least Norm. *Mathematica Numerica Sinica(Chinese)*. 2007, **2**: 203-21
- [3] Zhou S., Wu B.S.. Inverse Generalized Eigenvalue Problems for Anti-centrosymmetric Matrices. *Numerical Mathematics A journal of Chinese universities*. 2005, **27**(1): 53-59
- [4] Yuan Y.D., Wang X.R.. A Note on Least-Square Solution of Inverse Eigenvalue Problem for Symmetric Matrix. *Chinese Journal of Engineering Mathematics*. 2004, **21**(8): 108-110.
- [5] Tisseur F, Meerbergen K. The Quadratic Eigenvalue Problem[J]. SIAM Review. 2001, 43: 235-286
- [6] Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey[J]. *J. of Sound vibration*. 1993, **167**: 347-375
- [7] Weaver J R. Centrosymmetric matrices, their basic properties, eigenvalues, and eigenvectors. *Amer.Math.Monthly*. 1985, **92**: 711-717.
- [8] Wang X.R., Yuan Y.D. Liu Z.C.. Inverse Eigenvalue Problem of Generalized Centro-anti-symmetric Matrices. *Journal of Information and Computing Science*. 2008, **3**(2): 111-117.
- [9] Yuan Y.D., Wang X.R.. The Least Squares Symmetric Solutions of The Matrix Equation AXB+CYD+PZQ=F.

- 42 Xiangrong Wang, et al: The Least Squares Solutions of Bisymmetric Matrix for Inverse Quadratic Eigenvalue Problem (contributed)
- [10] Yuan Y.D.. Inverse Eigenvalue Poroblem for Anti-centrosymmetric Matrices. *Proceedings of The 14th Conference of International Linear Algebra Society*. 2007, pp. 398-401.
- [11] Chen J.L. Chen X.H.. Special Matrices. Tsinghua Press, 2001
- [12] Duan G.R.. Linear Systems Theory(Chinese version). Harbin institute of technology press, 2004.
- [13] Zhang X.D.. Matrix Analysis and Applications. Tsinghua Press, 2004.