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Abstract. In this paper, we consider the following Neumann boundary value problem
{ pp( () = luldiPulay 3 we(o,1),
w0 =0=u (1)
Where 4 € & and p>1 are parameters. We study the positive and negative solutions of this problem with
respect to a parameter  (i.e. {2} =) in all B*. By using a quadrature method, we obtain our results.
Also we provide some details about the solutions that are obtained.
AMS subject classification: 34B15.
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1. Introduction
Consider the nonlinear two point boundary value problem
—, (U (X)) =]u(x)|" u(x) - 2,x (0, (1)
u'(0)=0=u'()) (2)
where A€E and p>1 are parameters and ¢ {xJ:= [¥[F~%¢ for all x =0 and @g{0) =0 where ¢, fi )}’

is the one dimensional p -Laplacian operator. We study the positive and negative solution of this problem

with respect to a parameter r (that is the value of the solutions at zero, i.e. w{@}=7). Also by using a

guadrature method, we obtain our results. In [9] problem (1) with Dirichlet boundary value conditions have
been studied by Ramaswamy for the case Laplacian and in [1] the same problem with the same boundary
value conditions have been extended by Addou to the general quasilinear case p -Laplacian with p>1, i.e.

—qaw[u‘ixﬁ}‘ = |4|Pa— 4. In [2] and [7] for semipositon problems with p —Laplacian operator, existence

and multiplicity results have been established with Neumann boundary value conditions and Dirichlet
boundary value conditions, respectively. In [5], for semipositon and positon problems have been studied by
Anuradha, Maya and Shivaji by using a quadrature method with Neumann-Robin boundary conditions and
Laplacian operator. In [8] for semipositone problems, existence and multiplicity results have been
established with Laplacian operator and Neumann boundary value conditions. Also, in [3] and [6] for
semipositon problems with Laplacian operator have been studied for solution curves with Dirichlet boundary
value conditions.

This paper is organized as follows. In Section 2, we first state some remarks and then our main results
and finally in Section 3, we provide the proof of our main results that contains several lemmas.

2. Main Results
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By a solution of (1)- (2) we mean a function u € C2{[0,1[) for which @ {u'{x) € C2{[0,1]} and both
the equation and the boundary value conditions are satisfied.
Remark 1 If u is a solution to (1)- (2) at A then —u is a solution to (1)- (2) at — 4.

Remark 2 Let uisasolutionto (1)- (2) at.4 then
1
J'|u(x)|p u(x)dx = .
0
Remark 3 (cf. [[8], Lemma 2.2]) Every solution w of (1)-(2) is symmetric about any interior critical
points such that for any point xg& (0,1) where u’ €xg)=0 we have ufxg—z} = ufxz+ z} for all
z €[0,min{ xg,1 — xgil
In fact, if one define wyfz} = 1f x5 — =) and w.{=) = 1w xg+ =), then it is clear that both wy and w
satisfy the IVP
&
—@pbw'{x)) = [wladlPwix) - 4,
w0} = uelag),
wix) = 0.
Hence, by uniqueness theorem for ODE, one can conclude result.
Remark 4 If i is a solution to (1)-(2), then wf1 — x7} is also a solution to (1)-(2).

Remark 5 For any 4 2= @ the problem(1)-(2) has always a trivial solution u= A7 and for any A= @,
the problem (1)-(2) has always a trivial solution u= —{—A}F-f-.

Also it is well-known that the initial value problem

—p, U'(¥)) =[u(x)|" u(x) -4,
u(0) =r, (3)
u'(0) =0,

has a local solution beginning at zero (by applying the Schaude r fixed point theorem) which either becomes
infinite or exists on all of [0,1] and since f{ic} = |w|Pw— & is locally Lipschitz, one can conclude from the
classical theory for ODE the solution is locally unique. On the other hand for any given = and A, there exists
a real number 1y =mfr, A} (see Lemma 1(g)), such that w1} € {1} = w'{l) = 0 (due to (4)). Thus
if w1} & {1}, u (as a unique solution to IVP (3)) do not satisfy the BVP (1)-(2). Also it is clear that every
solution to the BVP (1)-(2) at A with 100} = r is a solutionto IVP (3). Now, we state the existence of
positive and negative solutions to the problem (1)-(2) as described below:
Theorem 1 Let € B and g = @, then,

(a) If r = @, the problem (1)-(2) has exactly one positive solution u with (@} == at any » € S5, where
i Ft=
5.= {:’;ﬂ PR UCrP o) for which if 4 € {:T,r"i“"*l} then |[az]|se =7 and if A € {F¥*1,cc)  then

Mt apq (X} = r and the problem (1)-(2) has no positive solution with %{@} = r atany 4 € 5% .

(b) if T # U, the problem (1)-(2) has exactly one negative solution u with &} = at any 4 € 5, where
Sp— (=0, rlr|?} Uir|r P, :i:l;} for which if 4 .:ﬂrw,:: o) then mingapyu(x)=1 and if

A € {—oe,7|r[®} then [|u]|.. =rand the problem (1)-(2) has no negative solution with €@} = at any
AESE.

3. Proof
Let u be a positive solution to {1} — {2} at A with {C} = = @ Now multiplying (1) throughout by
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u' and integrating over {@, x}, we obtain

p+l
ulu
|u1p=:p{——l—L—~+ﬁu+c}
p+2
where C is a constant. Applying the conditions 1,0} = » and u'{0}) = 0, we have
p+1 p+1
rir ulu
ul" = p¥ T bl - nhxe0) @)
p+2 p+2
Now, we define the function,
r|r|p+1 sls Pt
s> M(p,r,4,s):= — +A(s—r),0nR (5)
p+2 p+2

where # > @ andr & IE" are two parameters. The following lemma collects the variations of this function

that follows immediately and we omit its proof.
Lemmal Forall A € E* and 7 £ &,
(a) Hmmuce Mip,r, 4,5) = =00
(b) The function & —= M@, 4,5} is concave on E.

(c) The function & —= M1, 4} isincreasing on (—w, Aﬁ) and decreasing on {.:'t.ﬁ, @), and

LN (=0 ifi=r|r®
= =1
@E%anﬁ,s} M(mr,ﬁ,ii‘? )E) 0, if 4 =rlr®

(d) The v —intercept of the graph of M{m 14,.), i.e.

14 1-‘|1-l|'i5
= 0, if Ol ——,
f Bt
rlr|®
Mip rd 0 <=0 if A= ,
@140 fa=s
ks
= ¢ « A,
X £ p+2
(e) The function M{P, .4+ ) has two zeros T and Ty such that
i ;rlrl‘l‘-“
R | 4 if ﬂ-ﬂﬁﬂp_'_z
_ _ ¥
=10 if A= e
lo«ne o I e
g =T f o132 rlr
r=1y Hﬂ -4':"'=;1"|';"‘I""\1
\ P, if A= e,

Lemma 2 Let u be a nontrivial and positive solution to {1} —{2) at A with «{0% =»and k be the
number of interior critical points of ut where & = §,1,23,4, ... and if & =10, x, is the first interior critical

point, then
o o . 1
(a) The interior critical points of 1 are xg = ¥ = 2xg, Xz = 3%, ..., Xy—q = kXgand

_ E‘I{{.“{".;.}, ifk =0
= uf1), ifk =0

(b) % ppay = [ vl or [l
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(c) If uis decreasing at the beginning of 0,17 then:

”U”wZFZU(O):U(Xl):U(XS):--- (6)
minu(x) = =U(%) =u(x,) =u(x,) = (7)

and if u is increasing at the beginning of £@,1% then:

lu, =1 =u(x) =u(x,) =u(x,) =+ (8)
minu(x) =r=u(0) =u(x)=u(x)=" (9)

Proof of Lemma 2.
(a) Let xg be the first interior critical point of uand & = 0 be the number of interior critical points

of u. Thus the values of u for any x € {0, x5) must be between {0} = r and wfxy). Now we
show that #{x gl = 5. We know that #'€x5) = U, hence from (4) and (5), one can conclude that
M g, vy A wlxg)l = 0, also from the Lemma 1(e), M{p, #,4,u{0)) = 0 . On the other hand

M'Ejn', A, u{x}} = I forany x € {QL.ag). In fact, if there exists a real number xgg € €@ x5) such
that Mg, 1A, uxye)) = O then from (4), one can conclude that i §xgp) = 0, i.e. xpp € (0, xp) is
an interior critical point of 14 and this is a contradiction, because X is the first interior critical

point of 1 in the interval {813 Now, from the Lemma 1(e), it follows that

u ‘[o,xc]: [r,,rlor[r,r,] . Hence ufxy} =Ty. But if & =10, then the values of u forany x & (0,1}
must be between {0} and 1{1). Hence by similar argument, one can show that w{1) = .

It is clear that g — i +&% = @ and also by Remark 3, one can conclude that 2ig, 3xg, ... k¥g are

the rest interior critical points of 1. The proof of part (a) follows.

(b) It easily follows from the Remark 3 and the proof of Lemma 2(a).
(c) If & > @, umust be strictly increasing or decreasing on the interval {{, xg]. If 1 is decreasing

on £G xg}, then Mmany apygulx) = wll) = r and Min,ap. ulxl = wlxg) and by the Remark 3
and the fact that #{xg! = 73, one can conclude that

M Wlx) =1 = w(l) = ufry) = ulxy) =

and mingaegwia) =1, = wixg) = ulxz)} = ufxg) = . On the other hand by the Lemma 3(b)
and the fact that u attains its maximum and minimum values at ¥ =@ and x = ., respectively, it
follows that ||| |ec = @0} = 1 and MmEn,apyyuelx) = 1y = wlxy). Hence (6) and (7) hold. If uis
increasing on{, x5}, by similar argument, one can conclude that (8) and (9) hold. Also, if & =&, by

similar argument, one can conclude that (6)-(9) hold. The proof of part (c) follows. A

Lemma 3 Letu be a nontrivial and positive solution of (1)-(2) at 4 € 5, with w{I} = and & be the
number of interior critical points of u where & = 01,2, ..., then:

(@) 5= (225 rlel# JUgret#, ).

s

(b) The corresponding solution is defined by
i -1 1
[ 0t A = it ve @)
a
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b1} =1 ir
[ peonaa> = mi1 @ o, xc Gerod)

WL
such that
ialalks
-, If Aes Rabba
K= (?H‘ 2 i }
-+, if A€ {rr/® wk

iz may be +or —forany 4 €35, and if & = @, x, isthe first interior critical point of u.

Proof of Lemma 3.
By the Lemma 2(b), {x) € [my, rdor[r,m] for any x€[01], and it, by the Lemma 1(e), (4) and(5),

vl¥|F
- I'W
ﬁl'l"

yields that A must belong to the set( ) Now we show that, & == r[|¥. In fact, if A =|r[¥, then

1z =1 (by the Lemma 1(e)), hence by the Lemma 2(b), @ = r and this a contradiction, because the solution

U is nontrivial. Thus we conclude that §, = {:_:'r ,ﬂﬂw) Ufr 2P o).

(b) Note that since every solution of (1)-(2) is symmetric about each of its interior critical points, thus it
is enough to study solution on [, xg] and [kxg1] where x, is the first interior critical point. If

AE {rlzlf ,7|r|#), then by the Lemma 1(e), 1 =+ and so, by the Lemma 2(c), wixq) = u{ Q). Therefore u
P a

must be decreasing on [@, xg] and min, qpzay 1) = 1% Hence from (4), we have
i

i
w'(x) = —{p P {M{pr 4wl re0xg). (1)
Also if &% r|r|¥, @), then by the Lemma 1(e), 5 = and so, by the Lemma 2(c), ul{xp) = wi{0).

Therefore 1 must be increasing on [& xg] and || | = 1. Hence from (4), we have

wix) = +fp‘}'i% IMCpr 4, u{x}}}%, x & (0 xgh {11}

Also by ( 2), u may be increasing or decreasing on the interval [kxg,1]. Hence from (4), we have

i
W) = alp T (o 4000 VP, % € (e, 1), (12)
where 3 = +or—,

Now, integrating (10) and (11) on {0, x5} where x € {0,x5) and (12) on &x, 11 where x € (hxg 1),
one can obtain

e =1 )
Mo, 4,907 ds=r ] Fx, x € (0,xp) (13)
ull) =1 i
j Mo A5} ] ds =m0 &), x © (oeg 1) £14)
wlxd

where ®; and 3 have been defined before in the Lemma 4(b).
By substituting &= &, and & = kexg in (13) and (14), respectively, and using the fact that wixg) =
And wffevg) = or ¥, (by the Lemma 2(c)), we get

[ prorasnFas = x, (15)

[ e asFas = 10 - ko) (16)

where
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o

L A Y
(LR if &€ {r|r|?,w)

Note that in (15) and (16) the integrals are convergent. In fact,
Claim 1 The integrals _K,?‘{M{nﬂ.l,s}}?:is €02}, when ¢ =1,2.

0y and (g = iy, 01 o 1),

Proof of Claim 1. It is suffice to show that If:_{ﬂsf{nr,.i,sj}? gz & {ce). For this mean, by (5) and

Lemma 1(e), one can conclude that

i =i 1
!1_1;1;}. |g_r|w{MmTul.-E}}w =—j_E iﬂaw}.’

|& = || |#*T
i =1 1
Jim 2= | P {Mip, a5} P = — € (0,00).
|A = gl ry|F |52

Also we know that the integrals .1;: s—r|?- ds and .,l:; |s—:rt.|?- ¢z for @ = 1 are convergent. Thus
one can conclude that the convergence of the integral _I;{M{m i, s}}_?- ¢ is a consequence of that of the
integrals J";; |z—1|F dsand _,l"F: 3= F da. A

Here the proof of Lemma 3 is complete. A

If Ag ::If,ﬂﬂﬂ}, by the Lemma 1(e), 1* 2 minappqyiela} =15 > @, Hence u must be positive

solution. Also If Z& {r[+|?,ee}, by the Lemma 1(e), minamayiein} = > 0. Hence u must be positive

solution. Here the proof of Theorem 1(a) is complete. By the proof of the Theorem 1(a) and Remark 1, the
proof of Theorem 1(b) is clear.
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