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Abstract. In this paper, exact and numerical solutions are obtained for the Lienard’s equation by        
variational homotopy perturbation method (VHPM). Comparisons are made among the variational        
iteration method (VIM), the exact solutions and the proposed method. The results reveal that the       
proposed method is very effective and simple and can be applied for other nonlinear problems in       
mathematical. 
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1. Introduction  
In this paper, we consider Lienard equation:  

     ,thxgxxfx                                                              (1) 

which is not only regarded as a generalization of the damped pendulum equation or a damped spring-mass  

system (where  is the damping force, g(x) is the restoring force and h(t) is the external force), but 
also used as nonlinear models in many physically significant fields when taking different choices for f(x),  

g(x) and h(t). For example, the choices

 xxf 

   ,12  xxf     xxg   and   0th  lead equation of (1) to the 
Van der Pol equation served as a nonlinear model of electronic oscillation. Therefore, studying equation of 
(1) is of physical significance. In the general case, it is commonly believed that it is very difficult to find its 
exact solution by usual ways [3]. The following special case of equation (1) was studied in [1, 2, 3]: 

,053  nxmxlxx                                                              (2) 

where l, m and n are real coefficients. Finding explicit exact and numerical solutions of nonlinear equations 
efficiently is of major importance and has widespread applications in numerical methods and applied 
mathematics. In this study, we will implement the variational homotopy perturbation method (VHPM) to 
find exact solution and approximate solutions to the Lienard equation for a given nonlinearity.   

The VHPM provides the solution in a rapid convergent series which may lead the solution in a closed 
form. It is worth mentioning that the VHPM is applied with out any discretization, restrictive assumption, or 
transformation and is free from round-off errors. Also  the VHPM provides an analytical solution by  using 
the initial conditions only and the boundary conditions can be used only to justify the obtained result. 
Numerical results reveal that the VHPM is easy to implement and reduces the computational work to a 
tangible level while still maintaining a very higher level of accuracy [7]. 

2. Variational  Homotopy  Perturbation  Method     
To convey  the  basic  idea  of  the  variational  homotopy  perturbation  method,  we consider the 

following general differential equation: 

                                              ,xguNuL                                                                     (3) 
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where L is a linear operator, N is a nonlinear operator and g(x) is an inhomogeneous term.  According  to  
variational  iteration  method  [4-6,  8-12], we can construct a correct functional as follows: 

        ,~

0

1  dguNuLxuxu nn

x

nn                                           (4) 

where λ(τ) is a Lagrange multiplier [4-6, 8-12] which can be identified optimally via the variational iteration 

method. The subscripts n denote the nth approximation,  is considered as a restricted variation. That is, nu~

0~ nu  and (4) is called a correct functional.  Now, we apply the homotopy perturbation method;  
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which is the variational homotopy  perturbation  method  and  is  formulated  by  the coupling of variational 
iteration method and Adomian’s polynomials. The embedding parameter p[0,1] can be considered as an 
expanding parameter [13-18]. The homotopy perturbation method uses the homotopy parameter p as an 
expanding parameter [13-18] to obtain:  

 



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2

10
0

upupuupf i
i

i
                                                 (6) 

If p1, then (6) becomes the approximate solution of the form: 

.lim 2101   uuufu p                                                       (7) 

A comparison of like powers of p gives solutions of various orders. 

3. VHPM for Lienard's equation  
 In this section, we consider Lienard equation (2) with initial conditions: 

    ,0,0 21 CxCx                                                                 (8) 
by using of  initial conditions (8), we choose:  

                                           ,210 tCCtx                                                                      (9) 

Where  (9)  is  an  initial  approximation  of  Eq.  (2). For solving  Eq.  (2)  via VHPM, we consider: 

  ,xxL                                                           (10) 

  ,nxmxlxxN  53


t

                                       (11) 

where  L  is  a  linear  and  N  is  a  nonlinear  operator. According to the variational iteration method [4-6, 8-
12], we can construct a correct functional as follows: 
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                                    (12) 
0

where    is considered as a restricted variation.  Making the above functional stationary, the Lagrange 

multiplier can be determined as 

nx~

  which yields the following iteration formula: 

                                   (13)       .53
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So we obtain the components which constitute  tx , thus we will have: 

   210 xxxtx . 
For later numerical computation, we let the expression: 

 ,                                                      (15)  tx
n

i
in 




0

to denote the n-term approximation to .   tx

4. Implementation of the method 
In this section two important cases of Lienard equation will be investigated to show the reliability of the 

proposed scheme. 

Example  1.  We consider the equation (2) with the following initial conditions: 
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where m and l are arbitrary constants.  By using the equation (14) we have: 
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  

So we obtain the components which constitute  tx , thus we will have: 

   210 xxxtx . 

The exact value of  in a closed form is:  tx

    
m

ltl
tx




tanh12
,                                                      (17) 

as presented in [3]. 

Now in table 1, we present the absolute errors between    and the exact solution  and  the  absolute  

errors  between    and  the  exact  solution  for the values of  
1

2   5.01.01.0t , , , 1l 4m 3n . 

Table 1: The numerical  results for 1 ,   in comparison with the exact solution of x. 2

                                             t                         x  1                   x  2  

 
                              0.1                  8.8312 e-007                   5.3785 e-010  

                              0.2                  1.2932 e-005                  6.4118 e-008  

                              0.3                  5.6140 e-005                  1.1344 e-006  

                              0.4       1.3721 e-004                   8.9651 e-006 

                              0.5                  2.1031 e-004                  4.5009 e-005  

 

Also  in Table  2, we  present absolute  errors between  the  1-iterate  of  VIM  (x ) and the exact 

solution and  absolute  errors  between the 2-iterate  of  VIM  (x ) and the exact solution for the values of 

, , , , as presented in [3]. 

VIM1

VIM2

  5.01.01.0t 1l 4m 3n

Table 2: The numerical  results for x , x  in comparison with the exact solution of x. VIM1 VIM2

       

                                       t                      x x VIM1               x  x VIM2  

 
                              0.1                  8.8312 e-007                   5.3588 e-010  

                              0.2                  1.2932 e-005                  1.7493 e-008  

                              0.3                  5.6140 e-005                  1.4734 e-007  

                              0.4       1.3721 e-004                   5.3415 e-007 

                              0.5                  2.1031 e-004                  1.0564 e-006  

 

  Example  2.  Now, we consider the equation (2) with the following initial conditions: 

    ,00,
2

0 


 x
D

K
x                                                          (18) 

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, Vol. 6 (2011) No. 1, pp 073-080 77
 
 
where  
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by using the equation (14) we have: 
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So we obtain the components which constitute  tx , thus we will have: 

   210 xxxtx . 

The exact value of  in a closed form is:  tx
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where      
2

2 2

2 3
4 , 1

3 16 3 16

l m
K D

m nl m nl
   

 
,  as presented in [3]. 

Now in table 3, we present the absolute errors between    and the exact solution  and  the  absolute  

errors  between    and  the  exact  solution  for the values of  
1

2   5.01.01.0t , , , 1l 4m 3n . 

Table 3: The numerical  results for 1 ,   in comparison with the exact solution of x. 2

       

                                       t                         x  1                   x  2  

 
                              0.1                  8.0317 e-005                   7.2266 e-005  

                              0.2                  4.3147 e-004                  3.0265 e-004  

                              0.3                  1.3656 e-003                  7.1345 e-004  

                              0.4       3.3474 e-003                   1.2863 e-003 

                              0.5                  6.9285 e-003                  1.8965 e-003  

 

 Also  in Table  4,  we  present absolute  errors between  the  1-iterate  of  VIM  (x ) and  the  exact  

solution  and  absolute  errors  between  the  2-iterate  of  VIM  (x ) and the exact solution for the values 

of , , , , as presented in [3]. 

VIM1

VIM2

  5.01.01.0t 1l 4m 3n

Table 4: The numerical  results for x , x  in comparison with the exact solution of x. VIM1 VIM2

       

                                       t                         x x VIM1               x  x VIM2  

 
                              0.1                  2.0441 e-005                   4.4279 e-008  

                              0.2                  3.2151 e-004                  2.7277 e-006  

                              0.3                  1.5829 e-003                  2.9172 e-005  

                              0.4       4.8181 e-003                   1.5024 e-004 

                              0.5                  1.1232 e-002                  5.1335 e-004  

 

The numerical results reveal that the VHPM is easy to implement and reduces the computational work to 

a tangible level while still maintaining a very higher level of  accuracy. 

5. Conclusions 

In this paper, variational homotopy perturbation method was employed successfully for solving the 
Lienard equation. The exact solutions are compared with the numerical solutions of  VHPM  and  VIM.  The 
small amount of computation compared to that required in other methods such as the variational  iteration 
method and the rapid convergence show that the method is reliable and provides a significant  improvement  
in  solving  the  nonlinear equations over existing methods. The computations in this paper are done by 
MATLAB software. 
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