

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK

Journal of Information and Computing Science

Vol. 6, No. 2, 2011, pp. 083-096

An Extension of Edge Zeroing Heuristic for Scheduling

Precedence Constrained Task Graphs on Parallel Systems

Using Cluster Dependent Priority Scheme

Abhishek Mishra and Anil Kumar Tripathi

 Deptartment of Computer Engineering, Institute of Technology, Banaras Hindu University, Varanasi, India,

221005

(Received November 3, 2010, accepted December 20, 2010)

 (An extended abstract of this paper appears in the Proceedings of 2010 IEEE International Conference on Computer &

Communication Technology (ICCCT-2010), pages 647-651, ISBN: 978-1-4244-9034-9.)

Abstract. Sarkar's edge zeroing heuristic for scheduling precedence constrained task graphs on parallel

systems can be viewed as a priority based algorithm in which the priority is assigned to edges. In this

algorithm, the priority is taken as the edge weight. This can also be viewed as a task dependent priority

function that is defined for pairs of tasks. We have extended this idea in which the priority is a cluster

dependent function of pairs of clusters (of tasks). Using this idea we propose an algorithm of complexity

O(|V||E|(|V|+|E|)) and compare it with some well known algorithms.

Keywords: clustering, homogeneous systems, parallel processing, scheduling, task allocation.

1. Introduction

A parallel system is designed so that it can execute the applications faster than a sequential system. For

this we need to parallelize the program. There are three steps involved in the parallelization of a program

(Sinnen [27]). The first step is called task decomposition in which the application is divided into tasks. The

degree of concurrency is the number of tasks that can be executed simultaneously (Grama et al. [10]).

The tasks generated may have interdependencies between them that will decide the partial execution

order of tasks. The determination of precedence constraints between the tasks is the second step of

parallelization and is called dependence analysis (Banerjee et al. [2], Wolfe [29]).

A dependence relation among the tasks is represented as a directed acyclic graph, also known as the task

graph. Nodes in the task graph represent the tasks and have a weight associated with them that represents the

execution time of the task. Edges in the task graph represent the dependence relation between the tasks and

have a weight associated with them that represents the communication time between the tasks.

The final step of parallelization is the scheduling of tasks to the processors. By scheduling we mean both

the spatial assignment (task allocation), and the temporal assignment (assigning start time) of tasks to the

processors.

The problem of finding a scheduling for a given task graph on a given set of processors that takes

minimum time is NP-Complete (Sarkar [26], Papadimitriou and Yannakakis [24]). Therefore several

heuristics are applied for solving this problem in polynomial time (Yang and Gerasoulis [32], Gerasoulis and

Yang [8], Dikaiakos et al. [7], Kim and Browne [16], Kwok and Ahmed [17], [18], Lo [19], Malloy et al.

[22], Wu and Gajski [30], Kadamuddi and Tsai [14], Sarkar [26], Yang and Gerasoulis [33], Wu et al. [31],

Sih and Lee [28]). The solutions generated by using these algorithms are generally suboptimal.

Our heuristic is an extension of Sarkar's edge zeroing heuristic [26] for scheduling precedence

constrained task graphs on parallel systems. Sarkar's algorithm can be viewed as a task dependent priority

based algorithm in which the priority (in this case edge weight) is a function of pairs of tasks. We extend this

concept and define the priority as a cluster dependent function of pairs of clusters. Using this concept we

propose an algorithm of complexity O(|V||E|(|V|+|E|)) and compare it with some well known algorithms.

The remainder of the paper is organized in the following manner. Section 2 presents an overview of the

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

84

related literature. Section 3 defines a cluster dependent priority scheme that is dependent on cluster-pairs and

also presents the proposed algorithm. Section 4 presents a detailed description of the algorithms used.

Section 5 gives a sample run of the algorithm. Section 6 presents some experimental results. And finally in

section 7 we conclude our work.

2. Literature Overview

Most scheduling algorithms for parallel systems in the literature are based on an idealized model of the

target parallel system also referred to as the classic model (Sinnen [27]). It is a set of identical processors

with fully connected dedicated communication subsystem. Local communications are cost-free and we also

have concurrent inter-processor communications.

A fundamental scheduling heuristic is called the list scheduling heuristic. In list scheduling, first we

assign a priority scheme to the tasks. Then we sort the tasks according to the priority scheme, while

respecting the precedence constraints of the tasks. Finally each task is successively scheduled on a processor

chosen for it. Some examples of list scheduling algorithms are: Adam et al. [1], Coffman and Graham [3],

Graham [9], Hu [13], Kasahara and Nartia [15], Lee et al. [20], Liu et al. [21], Wu and Gajski [30], Yang and

Gerasoulis [34].

Another fundamental scheduling heuristic is called clustering. Basically it is a scheduling technique for

an unlimited number of processors. It is often proposed as an initial step in scheduling for a limited number

of processors. A cluster is a set of tasks that are scheduled on the same processor. Clustering based

scheduling algorithms generally consist of three steps. The first step finds a clustering of the task graph. The

second step finds an allocation of clusters to the processors. The last step finds a scheduling of the tasks.

Some examples of clustering based scheduling algorithms are: Mishra et al. [23], Yang and Gerasoulis [32],

Kim and Browne [16], Kadamuddi and Tsai [14], Sarkar [26], Hanen and Munier [11].

3. The Cluster Dependent Priority Scheduling Algorithm

3.1. Notation
Let N denote the set of natural numbers: {1, 2, 3, ...}. Let R denote the set of real numbers, and let R+

denote the set of non-negative real numbers. For (1 ≤ i ≤ n), let there be n tasks Mi. Let

 M = {Mi | 1 ≤ i ≤ n} (1)

be the set of tasks. Then for (1 ≤ i ≤ n), the clusters Ci  M are such that for i ≠ j and (1 ≤ i ≤ n, 1 ≤ j ≤ n):

 Ci ∩i ≠ j Cj = ф, (2)

and

 n
i = 1Ci = M. (3)

Let

 C = {Cj | Cj  M, 1 ≤ i ≤ n} (4)

be a decomposition of M into clusters. Note that some of the Cj's may be empty. Let

 V = {i | 1 ≤ i ≤ n} (5)

denote the set of vertices of the task graph. Let the directed edge from i to j be denoted as (i → j). Let

 E = {(i, j) | i  V, j  V, (i → j)} (6)

denote the set of edges of the task graph. Let mi  R+ be the execution time of the task Mi. If (i, j)  E, then

let wij  R+ be the communication time from Mi to Mj. Let T be the adjacency list representation of the task

graph.

Let cluster : N → N be a function such that:

 cluster(i) = j ↔ Mi  Cj. (7)

For Cj  C, let comp : C → R+ be a function that gives the total computation time of a cluster:

 comp(Cj) = ∑MiCj wi. (8)

For Ci  C, and Cj  C, let comm : C X C → R+ be a function that gives the total communication time

from the first cluster to the second cluster:

 comm(Ci, Cj) = ∑Mp  Ci, Mq  Cj, (p, q)  E wpq. (9)

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

85

We follow the convention that for a given function f, f(...) is a function notation (useful in definition) and

f[...] (or f[...][...]) is the corresponding array notation (useful in algorithms for implementing functions as

arrays).

3.2. Sarkar's Edge Zeroing Heuristic
When the two tasks that are connected through a large weight edge, are allocated to different processors,

then this will make a large communication delay. To avoid large communication delays, we generally put

such tasks together on the same machine, thus avoiding the communication delay between them. This

concept is called edge zeroing.

Sarkar's alorithm [26] uses the concept of edge zeroing for clustering of tasks. Edges are sorted in

decreasing order of edge weights. Initially each task is in a separate cluster. Edges are examined one-by-one

in decreasing order of edge weight. The two clusters connected by the edge are merged together if on doing

so, the parallel execution time does not increase. Sarkar's algorithm uses the level information to determine

the parallel execution time and the levels are computed for each step. This process is repeated until all the

edges are examined. The complexity of Sarkar's algorithm is O(|E|(|V|+|E|)).

We can define a task dependent priority scheme for Sarkar's algorithm. Let Pm : M X M → R be a

function such that

 Pm (Mi, Mj) = wij ↔ (i,j)  E, (10)

and

 Pm (Mi, Mj) = -∞ ↔ (i,j)  E. (11)

Now if we make a descending priority queue of pairs of tasks (Mi, Mj) based on the value of Pm such that

 Pm (Mi , Mj) ≥ 0, (12)

then this is equivalent to the first step of Sarkar's algorithm in which the edges are sorted in decreasing order

of edge weight.

3.3. An Example of Cluster Dependent Priority Scheme
In order to get a good scheduling algorithm, we should define a good cluster dependent priority scheme

Pc. We use two observations. The first observation is that by merging two clusters that are heavily

communicating with each other, we can expect to reduce the parallel execution time by using the edge

zeroing principle. The second observation is that we can exploit parallelism in a better way by keeping two

heavily computing clusters separated. Therefore a good priority scheme should reflect these two observations.

One such cluster dependent priority scheme is defined by:

 Pc(Ci, Cj) = comm(Ci, Cj) + comm(Cj, Ci) - comp(Ci) – comp(Cj). (13)

3.4. The Cluster-Pair-Priority-Scheduling Algorithm
Cluster-Pair-Priority-Scheduling(T)

01 flag ← true

02 for k ← 1 to |V|

03 do cluster[k] ← k

04 Pc[...][...] ← Evaluate-Priority(T, cluster[...])

05 (p, array[...]) ← Sort(T, Pc[...][...], cluster[...])

06 min ← Evaluate-Time(T, cluster[...])

07 reach[...][...] ← Reachability (T)

08 (topology[...], trank[...]) ← Topological-Sort(T)

09 while flag = true

10 do flag ← false

11 for m ← 1 to p

12 do if flag = true

13 then break

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

86

14 (i, j) ← array[m]

15 Merge(T, i, j, cluster[...], topology[...], trank[...], reach[...][...])

16 time ← Evaluate-Time(T, cluster[...])

17 if time < min

18 then flag ← true

19 min ← time

20 Pc[...][...] ← Evaluate-Priority(T, cluster[...])

21 (p, array[...]) ← Sort(T, Pc[...][...], cluster[...])

22 else undo step 15

23 return (min, cluster[...])

Cluster-Pair-Priority-Scheduling(...) (CPPS) is the proposed algorithm that uses the cluster dependent

priority scheme. Let Pc : C X C → R be a cluster dependent priority function. flag is a Boolean variable that

is used to determine when a clustering is able to reduce the parallel execution time of the system. In line 01,

flag is initialized to true. In the for loop from lines 02 to 03, each task is initially kept in a separate cluster. In

line 04, the priority of each cluster-pair is calculated using the function Evaluate-Priority(...) that is

connected by at least one edge and stored in the array Pc[...][...]. In line 05, the cluster-pairs are sorted using

the function Sort(...) in non-increasing order of their Pc[...][...] values. Sort(...) returns p and array[...]. p is

the number of cluster-pairs between which Pc[...][...] is defined. array[...] is an array that stores the cluster-

pairs between which Pc[...][...] is defined. In line 06, the parallel execution time of the clustering is evaluated

using the function Evaluate-Time(...), and stored in the variable min. min is used to obtain the clustering that

gives the minimum parallel execution time. In line 07, the reachability matrix reach[...][...] is evaluated

using the function Reachability(...). We have reach[i][j] = true if and only if there exists a path from Mi to

Mj. In line 08, the task graph T is topologically sorted using the function Topological-Sort(...) and stored in

the array topology[...]. The topological ranks of the tasks are stored in the array trank[...].

In lines 09 to 22, in the while loop, the cluster-pairs are examined one-by-one in non-increasing order of

their Pc[...][...] values (the for loop from lines 11 to 22). In line 15, the cluster-pair is merged using the

function Merge(...). In line 16, the parallel execution time of the current clustering is evaluated using the

function Evaluate-Time(...) and the value is stored in the variable time. In lines 18 to 21, if the parallel

execution time is reduced, then the cluster-pairs are again sorted in non-increasing order of their Pc[...][...]

values, and the while loop from lines 09 to 22 is restarted. In line 22, if the parallel execution time of the

clustering is not reduced, then the cluster-pair is kept separated. This process is repeated until no further

reduction in parallel execution time is possible. Line 23 returns the parallel execution time and the clustering.

Line 01 has complexity O(1). The for loop from lines 02 to 03 has complexity O(|V|). In line 04, the

algorithm Evaluate-Priority(...) has complexity O(|V| + |E|) (section 4.1). In line 05, the algorithm Sort(...)

has complexity O(|E| log (|E|)) (Horowitz et al. [12]). In line 06, the algorithm Evaluate-Time(...) has

complexity O(|V| + |E|) (section 4.3). In line 07, the algorithm Reachability(...) has complexity O(|V|(|V| +

|E|)) (Papadimitriou [25]). In line 08, the algorithm Topological-Sort(...) has complexity O(|V| + |E|)

(Cormen et al. [4]). The complexity of the CPPS algorithm is dominated by the while loop from lines 09 to

22 that can iterate a maximum of |V| times, since after each merging of clusters, one cluster is reduced. The

for loop from lines 11 to 22 can iterate a maximum of |E| times, since Pc[...][...] is defined between the

clusters that are having edges between them. Each iteration of the for loop has complexity that is dominated

by lines 15 and 16, each of which has complexity O(|V| + |E|) (Sections 4.2 and 4.3 respectively). Therefore,

the while loop has complexity O(|V||E|(|V| + |E|)) that is also the complexity of CPPS algorithm.

4. A Detailed Description of the Algorithms Used

4.1. Evaluate-Priority
Evaluate-Priority(T, cluster[...])

01 for each (i,j)  E

02 do k ← cluster[i]

03 l ← cluster[j]

04 if k ≠ l

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

87

05 then Pc[k][l] ← 0

06 for each (i,j)  E

07 do k ← cluster[i]

08 l ← cluster[j]

09 if k ≠ l

10 then Pc[k][l] ← Pc[k][l] + wij

11 for i ← 1 to |V|

12 do comp[i] ← 0

13 for i ← 1 to |V|

14 do k ← cluster[i]

15 comp[k] ← comp[k] + wi

16 for each (i,j)  E

17 do k ← cluster[i]

18 l ← cluster[j]

19 if k ≠ l

20 then if (comp[k] + comp[l]) was previously not subtracted from Pc[k][l]

21 then Pc[k][l] ← Pc[k][l] - (comp[k] + comp[l])

22 return Pc[...][...]

In lines 01 to 05, the Pc[...][...] values between different cluster-pairs are initialized to 0. In lines 06 to 10,

the edge weights between the corresponding cluster-pairs are added to the Pc[...][...] values between them.

The comp[...] value of each cluster is initialized to 0 in lines 11 to 12. The comp[...] value of clusters are

calculated in lines 13 to 15. In lines 16 to 21, the comp[...] value of corresponding clusters are subtracted

from the sum of weights between the clusters to get the Pc[...][...] values between the cluster-pairs. Line 22

returns the array Pc[...][...].

The for loop from lines 01 to 05, and 06 to 10, each have complexity O(|E|). The for loop from lines 11

to 12, and 13 to 15, each have complexity O(|V|). The for loop from lines 16 to 21 has complexity O(|E|).

Line 22 has complexity O(1). Therefore the algorithm Evaluate-Priority(...) has complexity O(|V| + |E|).

4.2. Merge
Merge(T, i, j, cluster[...], topology[...], trank[...], reach[...][...])

01 flag1 ← flag2 ← false

02 k ← l ← 0

03 ablevel[...] ← Allocated-Bottom-Level(T, cluster[...])

04 while k ≤ |V| and l ≤ |V|

05 do if flag1 =false

06 then while k ≤ |V|

07 do k ← k + 1

08 if cluster[topology[k]] = cluster[i]

09 then p1 ← topology[k]

10 flag1 ← true

11 break

12 if flag2 = false

13 then while l ≤ |V|

14 do l ← l + 1

15 if cluster[topology[l]] = cluster[j]

16 then p2 ← topology[l]

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

88

17 flag2 ← true

18 break

19 if flag1 = true and flag2 = true

20 then if reach[p1][p2] = true

21 then flag1 ← false

22 if reach[p2][p1] = true

23 then flag2 ← false

24 if flag1 = true and flag2 = true

25 then if ablevel[p1] > ablevel[p2]

26 then add a pseudo-edge of cost 0 from p1 to p2

27 flag1 ← false

28 if ablevel[p1] < ablevel[p2]

29 then add a pseudo-edge of cost 0 from p2 to p1

30 flag2 ← false

31 if ablevel[p1] = ablevel[p2]

32 then if trank[p1] < trank[p2]

33 then add a pseudo-edge of cost 0 from p1 to p2

34 flag1 ← false

35 else add a pseudo-edge of cost 0 from p2 to p1

36 flag2 ← false

37 for m ← 1 to |V|

38 do if cluster[m] = cluster[j]

39 then cluster[m] ← cluster[i]

In line 01, flag1 and flag2 are initialized to false. flag1 is used for searching the next task that is in the

cluster Ci in topological order (line 05 and the inner while loop from lines 06 to line 11). The task searched is

stored in p1 (line 09). flag2 is used for searching the next task that is in the cluster Cj in topological order (line

12 and the inner while loop from lines 13 to line 18). The task searched is stored in p2 (line 16). In line 02, k

and l are initialized to 0. k and l are used as indices for searching the tasks in topological order that belong to

the clusters Ci and Cj respectively. In line 03, the allocated bottom level (Sinnen [27]) of the tasks of the task

graph T for the current allocation cluster[...] (before merging Ci and Cj) is evaluated using the function

Allocated-Bottom-Level(...) and stored in the array ablevel[...]. Given an allocation of tasks, the allocated

bottom level of a task Mn is the length of the longest path starting with Mn in which the weight of an edge is

taken as 0 if the two tasks corresponding to the edge are allocated on the same processor.

Given an allocation, a scheduled DAG (Yang and Gerasoulis [32]) is a DAG in which there are no

independent tasks in any cluster. If there are independent tasks in a cluster, then we can make them

dependent by adding 0-cost pseudo-edges between them. We follow the approach used by Sarkar (Sarkar

[26]) in which we add a pseudo-edge of cost 0 from a task of higher allocated bottom level to a task of lower

allocated bottom level if the two tasks are independent (lines 25 to 30). If the allocated bottom levels of the

tasks are same, then we add a pseudo-edge of cost 0 from a task that comes earlier in topological order to the

task that comes later in topological order (lines 31 to 36). By following this strategy, it will ensure that there

does not exist any cycle in the task graph so that the resulting graph is a scheduled DAG. This is because in a

DAG, the successor of a task has lower allocated bottom level and also it comes topologically later. If we

always add pseudo-edges of cost 0 from tasks having a higher allocated bottom level to a task having a lower

allocated bottom level, then if a cycle exists then some successor of a node will have a higher allocated

bottom level than the node itself which is not possible (for the case of cycles having at least one non-pseudo-

edge). For the case of equal allocated bottom levels (for the case of cycles having all edges as pseudo-edges),

since we are always adding a pseudo-edge of cost 0 from a task that comes earlier in topological order to the

task that comes later in topological order, consider the task in the cycle that comes earliest in topological

order. Now the predecessor of that task should come even earlier than the task itself implying a contradiction.

Therefore a cycle is not possible.

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

89

We are evaluating the reachability matrix reach[...][...] using the function Reachabilty(...) at the initial

time only to reduce the complexity of the Merge(...) algorithm. This makes no difference because adding

some extra 0-cost pseudo-edges will make no difference to the scheduling. If p2 is reachable from p1, then we

again search for the next p1 in topological order (lines 20 to 21). If p1 is reachable from p2, then we again

search for the next p2 in topological order (lines 22 to 23). If neither p2 is reachable from p1, nor p1 is

reachable from p2, then we draw a 0-cost pseudo-edge from the task with higher ablevel[...] to the task with

lower ablevel[...] (lines 24 to 30). For the case of equal ablevel[...], we draw a 0-cost pseudo edge from the

task with lower trank[...] to the task with higher trank[...]. We continue in this manner until all the nodes of

the two clusters are examined (the outer while loop from lines 04 to 36). And finally in lines 37 to 39, we

merge the two clusters Ci and Cj.

Lines 01 to 02 have complexity O(1). In line 03, Allocated-Bottom-Level(...) has complexity O(|V| + |E|)

(Sinnen [27]). The while loop from lines 04 to 36 has complexity O(|V|). The for loop from lines 37 to 39

has complexity O(|V|). Therefore the algorithm Merge(...) has complexity O(|V| + |E|).

4.3. Evaluate-Time
Evaluate-Time(T, cluster[...])

01 stack ← empty

02 for k ← 1 to |V|

03 do atlevel[k] ← 0

04 time[k] ← 0

05 backlink[k] ← 0

06 for each (k, m)  E

07 do backlink[m] ← backlink[m] + 1

08 for k ← 1 to |V|

09 do if backlink[k] = 0

10 then Push(stack, k)

11 while stack ≠ empty

12 do i ← Pop(stack)

13 if atlevel[i] ≥ time[cluster[i]]

14 then time[cluster[i]] ← atlevel[i] + wi

15 else time[cluster[i]] ← time[cluster[i]] + wi

16 for each (i, j)  E

17 do backlink[j] ← backlink[j] - 1

18 if cluster[i] = cluster[j]

19 then c ← 0

20 else c ← wij

21 if time[cluster[i]] + c > atlevel[j]

22 then atlevel[j] ← time[cluster[i]] + c

23 if backlink[j] = 0

24 then Push(stack, j)

25 return Max(time[...])

In line 01, stack is initially empty. stack is used to traverse the nodes of the task graph. In the for loop

from lines 02 to 05, the arrays atlevel[...], time[...], and backlink[...] are initialized to 0. atlevel[k] is the

allocated top level (Sinnen [27]) of task Mk. Given an allocation of tasks, the allocated top level of a task Mk

is the length of the longest path ending with Mk (excluding the computation weight of Mk that is wk) in which

the weight of an edge is taken as 0 if the two tasks corresponding to the edge are allocated on the same

processor. time[k] is the finish time of the processor k at which it finishes all of its allocated tasks. backlink[k]

is the number of edges that are incident on the task Mk. In the for loop from lines 06 to 07, backlink[...] of

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

90

the tasks is evaluated. In the for loop from lines 08 to 10, the initial tasks that are not having any incident

edge are pushed onto the stack using the function Push(...). In the while loop from lines 11 to 24, we

repeatedly pop a task using the function Pop(...) from the stack and compare its allocated top level with the

partial execution time of the processor on which it is allocated. We update the time[...] value of the processor

depending on whether processor has to remain idle for some time or not (lines 12 to 15). In the for loop from

lines 16 to 17, for each outgoing edge we decrement the corresponding backlink[...] value indicating the

completion of communication corresponding to the edges. In lines 18 to 20, c is the communication time

from the task Mi to the task Mj depending upon whether the two tasks are allocated on the same processor or

not. In lines 21 to 22, the allocated top level of successors is updated according to the definition. In lines 23

to 24, tasks are pushed onto the stack if they have completed all of their communications. And finally in line

25, the maximum of partial execution time of processors (using the function Max(...)) is returned that is the

parallel execution time of the given scheduling if the task graph T is a scheduled DAG.

Line 01 has complexity O(1). The for loop from lines 02 to 05, and 08 to 10, each have complexity

O(|V|). The for loop from lines 06 to 07 has complexity O(|E|). The while loop from lines 11 to 24 has

complexity O(|E|) because of the for loop from lines 16 to 17. Line 25 has complexity O(|V|). Therefore the

algorithm Evaluate-Time(...) has complexity O(|V| + |E|).

5. A Sample Run of the CPPS Algorithm

Fig. 1 (left): The example task graph. Fig. 2 (right): The initial clusters and the priorities between them. Parallel

execution time is 39.

As an example for explaining the steps involved in the CPPS algorithm, we will consider the task graph

in Fig. 1, that is taken from Kadamuddi and Tsai [14], for clustering. Tasks are shown in circles with their

labels and execution times. Communication delays (edge weights) are shown in rectangular boxes along their

respective edges.

Initially each task is kept in a separate cluster as shown in Fig. 2, in which clusters are shown in circles

listing their constituent tasks, along with the weight of the cluster. In rectangular boxes, along the edges, are

shown the priorities between different cluster-pairs. Parallel execution time for this clustering comes out to

be 39.

In Fig. 2, the cluster-pairs {M2} and {M5}; and {M14} and {M15} are examined for merging in non-

increasing order of priorities between them. After merging, their parallel execution time comes out to be 39,

and 36 respectively. Therefore the cluster-pair {M14} and {M15} is merged in Fig. 3, since it is the first

cluster-pair that is reducing the parallel execution time from the previous value of 39 (Fig. 2) to 36 (Fig. 3).

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

91

Fig. 3 (left): Clustering after merging {M14} and {M15}. Parallel execution time is 36. Fig. 4 (right): Clustering after

merging {M1} and {M2}. Parallel execution time is 33.

Fig. 5 (left): Clustering after merging {M13} and {M14, M15}. Parallel execution time is 30. Fig. 6 (right): Clustering after

merging {M1, M2} and {M4}. Parallel execution time is 28.

In Fig. 3, the cluster-pairs {M2} and {M5}; {M6} and {M9}; {M7} and {M11}; {M8} and {M12}; {M11} and

{M12}; and {M1} and {M2} are examined for merging in non-increasing order of priorities between them.

After merging, their parallel execution time comes out to be 36, 36, 36, 36, 36, and 33 respectively.

Therefore the cluster-pair {M1} and {M2} is merged in Fig. 4, since it is the first cluster-pair that is reducing

the parallel execution time from the previous value of 36 (Fig. 3) to 33 (Fig. 4).

In Fig. 4, the cluster-pairs {M6} and {M9}; {M8} and {M12}; {M11} and {M12}; {M1, M2} and {M5}; {M7}

and {M11}; {M10} and {M14, M15}; and {M13} and {M14, M15} are examined for merging in non-increasing order

of priorities between them. After merging, their parallel execution time comes out to be 33, 33, 33, 33, 33, 33,

and 30 respectively. Therefore the cluster-pair {M13} and {M14, M15} is merged in Fig. 5, since it is the first

cluster-pair that is reducing the parallel execution time from the previous value of 33 (Fig. 4) to 30 (Fig. 5).

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

92

In Fig. 5, the cluster-pairs {M6} and {M9}; {M8} and {M12}; {M11} and {M12}; {M7} and {M11}; {M1, M2}

and {M5}; {M6} and {M10}; {M3} and {M7}; and {M1, M2} and {M4} are examined for merging in non-

increasing order of priorities between them. After merging, their parallel execution time comes out to be 30,

30, 30, 30, 30, 30, 30, and 28 respectively. Therefore the cluster-pair {M1, M2} and {M4} is merged in Fig. 6,

since it is the first cluster-pair that is reducing the parallel execution time from the previous value of 30 (Fig.

5) to 28 (Fig. 6).

In Fig. 6, the cluster-pairs {M6} and {M9}; {M11} and {M12}; and {M7} and {M11} are examined for

merging in non-increasing order of priorities between them. After merging, their parallel execution time

comes out to be 28, 28, and 26 respectively. Therefore the cluster-pair {M7} and {M11} is merged in Fig. 7,

since they are the first pair of clusters that is reducing the parallel execution time from the previous value of

28 (Fig. 6) to 26 (Fig. 7).

Fig. 7 (left): Clustering after merging {M7} and {M11}. Parallel execution time is 26. Fig. 8 (right): Clustering after

merging {M8} and {M13, M14, M15}. Parallel execution time is 25.

In Fig. 7, the cluster-pairs {M6} and {M9}; {M8} and {M12}; {M7} and {M11}; {M1, M2, M4} and {M5}; {M7,

M11} and {M12}; {M10} and {M13, M14, M15}; and {M8} and {M13, M14, M15} are examined for merging in non-

increasing order of priorities between the cluster-pairs. After merging, their parallel execution time comes

out to be 26, 26, 26, 26, 26, 26, and 25 respectively. Therefore, the cluster-pair {M8} and {M13, M14, M15} is

merged in Fig. 8, since it is the first cluster-pair that is reducing the parallel execution time from the previous

value of 26 (Fig. 7) to 25 (Fig. 8).

In Fig. 8, the cluster-pairs {M6} and {M9}; {M6} and {M10}; {M1, M2, M4} and {M5}; {M7, M11} and {M12};

{M3} and {M7, M11}; {M8, M13, M14, M15} and {M12}; {M1, M2, M4} and {M3}; {M7, M11} and {M10}; {M1, M2,

M4} and {M6}; {M8, M13, M14, M15} and {M10}; {M7, M11} and {M8, M13, M14, M15}; and {M1, M2, M4} and {M8,

M13, M14, M15} are examined for merging in non-increasing order of priorities between the cluster-pairs. After

merging, their parallel execution time comes out to be 25, 25, 25, 25, 25, 26, 28, 25, 25, 25, 27, and 23

respectively. Therefore the cluster-pair {M1, M2, M4} and {M8, M13, M14, M15} is merged in Fig. 9, since it is

the first cluster-pair that is reducing the parallel execution time from the previous value of 25 (Fig. 8) to 23

(Fig. 9).

In Fig. 9, the cluster-pairs {M6} and {M9}; {M6} and {M10}; {M3} and {M7, M11}; {M7, M11} and {M12};

{M7, M11} and {M10}; {M1, M2, M4, M8, M13, M14, M15} and {M5}; {M1, M2, M4, M8, M13, M14, M15} and {M12};

{M1, M2, M4, M8, M13, M14, M15} and {M6}; {M1, M2, M4, M8, M13, M14, M15} and {M10}; {M1, M2, M4, M8, M13,

M14, M15} and {M3}; and {M1, M2, M4, M8, M13, M14, M15} and {M7, M11} are examined for merging in non-

increasing order of priorities between the cluster-pairs. After merging, their parallel execution time comes

out to be 23, 23, 23, 23, 24, 25, 26, 26, 24, 25, and 28 respectively. Therefore we cannot merge any cluster-

pair in Fig. 9, since no cluster-pair is able to reduce the parallel execution time from the current value of 23

(Fig. 9) to a smaller value.

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

93

Fig. 9: Clustering after merging {M1, M2, M4} and {M8, M13, M14, M15}. Parallel execution time is 23.

The CPPS algorithm stops at this point. The clusters generated are: {M1, M2, M4, M8, M13, M14, M15},

{M3}, {M5}, {M6}, {M7, M11}, {M9}, {M10}, and {M12}. Parallel execution time comes out to be 23.

6. Experimental Results

Fig. 10 (left): Parallel execution time for 50 node task graphs. Average improvement of CPPS over EZ is 15.01%; over

LC is 4.57%; and over DSC is 0.59%. Fig. 11 (right): Parallel execution time for 100 node task graphs. Average

improvement of CPPS over EZ is 17.43%; over LC is 4.72%; and over DSC is 0.32%.

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

94

Fig. 12 (left): Parallel execution time for 200 node task graphs. Average improvement of CPPS over EZ is 17.16%; over

LC is 4.68%; and over DSC is 0.45%.Fig. 13 (right): Parallel execution time for 300 node task graphs. Average

improvement of CPPS over EZ is 18.88%; over LC is 5.07%; and over DSC is 0.77%.

Fig. 14 (left): Parallel execution time for 400 node task graphs. Average improvement of CPPS over EZ is 17.92%; over

LC is 4.86%; and over DSC is 0.32%. Fig. 15 (right): Parallel execution time for 500 node task graphs. Average

improvement of CPPS over EZ is 19.13%; over LC is 5.11%; and over DSC is 0.86%.

The CPPS algorithm is compared with three well known algorithms: Sarkar's Edge Zeroing (EZ)

algorithm [26], Kim and Browne's Linear Clustering (LC) algorithm [16], and Yang and Gerasoulis'

Dominant Sequence Clustering (DSC) algorithm [32]. The algorithms are tested on benchmark task graphs

of Tatjana and Gabriel [5, 6]. We have tested for 180 task graphs having the number of nodes as 50, 100, 200,

300, 400, and 500 respectively. Each task graph has a label as tn_i_j.td. Here n is the number of nodes. i is a

Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 083-096

JIC email for subscription: publishing@WAU.org.uk

95

parameter depending on the edge density. Its possible values are: 20, 40, 50, 60, and 80. For each

combination of n and i, there are 6 task graphs that are indexed by j. j ranges from 1 to 6. Therefore, for each

n there are 30 task graphs.

We define the performance improvement ratio of an algorithm A over an algorithm B (PI(A, B)) for a

given instance of task graph as follows:

 PI(A, B) = 1 - PT(A) / PT(B), (14)

where PT(X) is the parallel execution time of algorithm X. For performance evaluation we take the average

value of PI(A, B) for a given set of task graphs.

For the values of n having 50, 100, 200, 300, 400, and 500 respectively, Fig. 10 to Fig. 15 show the

comparison between the four algorithms: EZ, LC, DSC, and CPPS for the parallel execution time. The

average improvement of CPPS algorithm over EZ algorithm ranges from 15.01% to 19.13%. The average

improvement of CPPS algorithm over LC algorithm ranges from 4.57% to 5.11%. The average improvement

of CPPS algorithm over DSC algorithm ranges from 0.32% to 0.86%.

7. Conclusion

We formulated Sarkar's EZ algorithm [26] for scheduling precedence constrained task graphs on a

parallel system as a task dependent priority scheme in which the priority is defined for pairs of tasks. We

then extended this idea to cluster dependent priority scheme in which the priority is defined for pairs of

clusters. Using this idea we developed the CPPS algorithm. Using a suitable cluster dependent priority

scheme of complexity O(|V||E|(|V| + |E|)) we compared our algorithm with some well known scheduling

algorithms. Experimental results demonstrated good performance of the CPPS algorithm.

We give two research directions for future work. The first line of research is to reduce the complexity of

the CPPS algorithm without compromising its performance. The second line of research is to study the

performance of the CPPS algorithm for more intelligent priority schemes. The example given in this paper is

a static priority scheme. We can also think of dynamic priority schemes.

8. References

[1] T.L. Adam, K.M. Chandy, and J.R. Dickson. A comparison of list schedules for parallel processing systems.

Communications of the ACM. 1974, 17: 685-689.

[2] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A. Padua. Automatic program parallelization. Proceedings of the

IEEE. 1993, 81: 211-243.

[3] E.G. Coffman, and R.L. Graham. Optimal scheduling for two-processor systems. Acta Informatica. 1972, 1: 200-

213.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms(2nd edition). The MIT Press,

2001.

[5] T. Davidovic, and T.G. Crainic. Benchmark-problem instances for static scheduling of task graphs with

communication delays on homogeneous multiprocessor systems. Computers & Operations Research. 2006, 33:

2155-2177.

[6] T. Davidovic. Benchmark task graphs available online at http://www.mi.sanu.ac.rs/~tanjad/sched_results.htm.

[7] M.D. Dikaiakos, A. Rogers, and K. Steiglitz. A Comparison of Techniques Used for Mapping Parallel Algorithms

to Message-Passing Multiprocessors. Technical Report. Princeton Univ, 1994.

[8] A. Gerasoulis and T. Yang. A Comparison of Clustering Heuristics for Scheduling Directed Acyclic Graphs on

Multiprocessors. J. Parallel and Distributed Computing. 1992, 16: 276-291.

[9] R.L. Graham. Bounds for multiprocessing timing anomalies. SIAM Journal of Applied Mathematics. 1969, 17:

416-419.

[10] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing (2nd edition). London:

Pearson Addison Wesley, 2003.

[11] C. Hanen, and A. Munier. An approximation algorithm for scheduling dependent tasks on m processsors with

small communication delays. ETFA 95 (INRIA/IEEE Symposium on Emerging Technology and Factory

Animation). IEEE Press. 1995, pp. 167-189.

[12] E. Horowitz, S. Sahni, and S. Rajasekaran. Fundamentals of Computer Algorithms. W. H. Freeman, 1998.

[13] T. Hu. Parallel sequencing and assembly line problems. Operations Research. 1961, 9: 841-848.

http://www.mi.sanu.ac.rs/~tanjad/sched_results.htm

Abhishek Mishra, et al: An Extension of Edge Zeroing Heuristic for Scheduling Precedence Constrained Task Graphs

JIC email for contribution: editor@jic.org.uk

96

[14] D. Kadamuddi, and J.J.P. Tsai. Clustering Algorithm for Parallelizing Software Systems in Multiprocessors

Environment. IEEE Transations on Software Engineering. 2000, 26: 340-361.

[15] H. Kasahara, and S. Narita. Practical multiprocessor scheduling algorithms for efficient parallel processing. IEEE

Transactions on Computers. 1984, 33: 1023-1029.

[16] S.J. Kim, and J.C. Browne. A General Approach to Mapping of Parallel Computation upon Multiprocessor

Architectures. Proc. 1988 Int'l Conf. Parallel Processing. 1998, 3: 1-8.

[17] Y.K. Kwok, and I. Ahmad. Dynamic Critical-Path Scheduling: an Effective Technique for Allocating Task Graphs

to Multiprocessors. IEEE Trans. Parallel and Distributed Systems. 1996, 7: 506-521.

[18] Y.K. Kwok, and I. Ahmad. FASTEST: A Practical Low-Complexity Algorithm for Compile-Time Assignment of

Parallel Programs to Multiprocessors. IEEE Transactions on Parallel and Distributed Systems. 1999, 10: 147-159.

[19] V.M. Lo. Heuristic Algorithms for Task Assignment in Distributed Systems. IEEE Trans. Computers. 1988, 37:

1384-1397.

[20] C.Y. Lee, J.J. Hwang, Y.C. Chow, and F.D. Anger. Multiprocessor scheduling with interprocessor communication

delays. Operations Research Letters. 1988, 7: 141-147.

[21] Z. Liu. A note on Graham's bound. Information Processing Letters. 1990, 36: 1-5.

[22] B.A. Malloy, E.L. Lloyd, and M.L. Soffa. Scheduling DAG's for Asynchronous Multiprocessor Execution. IEEE

Trans. Parallel and Distributed Systems. 1994, 5: 498-508.

[23] P.K. Mishra, K.S. Mishra, and A. Mishra. A Clustering Heuristic for Multiprocessor Environments using

Computation and Communication Loads of Modules. International Journal of Computer Science & Information

Technology (IJCSIT). 2010, 2: 170-182.

[24] C. Papadimitriou, and M. Yannakakis. Towards an Architecture Independent Analysis of Parallel Algorithms.

SIAM Journal on Computing. 1990, 19: 322-328.

[25] C. Papadimitriou. Computational Complexity. Addison Wesley Longman, 1994.

[26] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Research Monographs in Parallel

and Distributed Computing. MIT Press, 1989.

[27] O. Sinnen. Task Scheduling for Parallel Systems. John Wiley & Sons, 2007.

[28] G.C. Sih, and E.A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous

Processor Architectures. IEEE Transactions on Parallel and Distributed Systems. 1993, 4: 175-187.

[29] M. Wolfe. High Performance Compilers for Parallel Computing. Addison Wesley, 1996.

[30] M.Y. Wu, and D.D. Gajski. Hypertool: A Programming Aid for Message-Passing Systems. IEEE Trans. Parallel

and Distributed Systems. 1990, 1: 330-343.

[31] M.Y. Wu, W. Shu, and J. Gu. Efficient Local Search for DAG Scheduling. IEEE Transactions on Parallel and

Distributed Systems. 2001, 12: 617-627.

[32] T. Yang, and A. Gerasoulis. A Fast Static Scheduling Algorithm for DAGs on an Unbounded Number of

Processors. Proc. Fifth Int'l Conf. Supercomputing. 1991, pp. 633-642.

[33] T. Yang, and A. Gerasoulis. PYRROS: Static Scheduling and Code Generation for Message Passing

Multiprocessors. Proc. Sixth Int'l Conf. Supercomputing. 1992, pp. 428-437.

[34] T. Yang, and A. Gerasoulis. List scheduling with and without communication delays. Parallel Computing. 1993,

19: 1321-1344.

