

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc

Ratan Kumar Dutta +

Department of Mathematics, Siliguri Institute of Technology, Post.-Sukna, Siliguri, Dist.-Darjeeling, Pin-734009, West Bengal, India

(Received December 18, 2010, accepted December 28, 2010)

Abstract: This paper is concerned with the study of the maximum modulus and the coefficients of the power series expansion of a function of several complex variables analytic in the unit polydisc.

Keywords: Analytic function, order, lower order, several complex variables, unit polydisc.

1. Introduction and Definitions

Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in the unit disc $U = \{z : |z| < 1\}$ and M(r) = M(r, f) be the maximum of | f(z) | on | z | = r.

In 1968 Sons [8] introduced the following definition of the order ρ and the lower order λ as

$$\frac{\rho}{\lambda} = \lim_{r \to 1} \frac{\sup \log \log M(r, f)}{\inf - \log (1 - r)}.$$

Maclane [6] and Kapoor [5] proved the following results which are the characterization of order and lower order of a function f analytic in U, in terms of the coefficients c_n .

Theorem 1.1 [6] Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in U, having order $\rho(0 \le \rho \le \infty)$. Then

$$\frac{\rho}{1+\rho} = \limsup_{n\to\infty} \frac{\log^+\log^+|c_n|}{\log n}.$$

Theorem 1.2 [5] Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in U, having lower order $\lambda (0 \le \lambda \le \infty)$. Then

$$\frac{\lambda}{1+\lambda} \ge \liminf_{n\to\infty} \frac{\log^+\log^+|c_n|}{\log n}.$$

Notation 1.3 [7] $\log^{[0]} x = x$, $\exp^{[0]} x = x$ and for positive integer m, $\log^{[m]} x = \log(\log^{[m-1]} x)$, $\exp^{[m]} x = \exp(\exp^{[m-1]} x).$

In a paper [4] Juneja and Kapoor introduced the definition of p-th order and lower p-th order and in 2005 Banerjee [1] generalized Theorem 1.1 and Theorem 1.2 for p-th order and lower p-th order respectively.

Definition 1.4 [4] If $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in U, its p-th order ρ_p and lower p-th order λ_p are defined as

⁺ E-mail address: ratan_3128@yahoo.com

$$\frac{\rho_p}{\lambda_p} = \lim_{r \to 1} \sup_{\text{inf}} \frac{\log^{\lfloor p \rfloor} M(r)}{-\log(1-r)}, p \ge 2.$$

Theorem 1.5 [1] Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in U and having p-th order ρ_p $(0 \le \rho_p \le \infty)$. Then

$$\frac{\rho_p}{1+\rho_n} = \limsup_{n\to\infty} \frac{\log^{+[p]} |c_n|}{\log n}.$$

Theorem 1.6 [1] Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic in U and having lower p-th order λ_p $(0 \le \lambda_p \le \infty)$.

Then

$$\frac{\lambda_p}{1+\lambda_n} \ge \liminf_{n\to\infty} \frac{\log^{+[p]} |c_n|}{\log n}.$$

In 2008 Banerjee and Dutta [2] introduced the following definition.

Definition 1.7 Let $f(z_1, z_2)$ be a non-constant analytic function of two complex variables z_1 and z_2 holomorphic in the closed unit polydisc

$$P:\{(z_1,z_2):|z_j|\leq 1; j=1,2\}$$

then order of f is denoted by ρ and is defined by

$$\rho = \inf \left\{ \mu > 0 : F(r_1, r_2) < \exp \left(\frac{1}{1 - r_1} \cdot \frac{1}{1 - r_2} \right)^{\mu}; \text{ for all } 0 < r_0(\mu) < r_1, r_2 < 1 \right\}.$$

Equivalent formula for ρ is

$$\rho = \limsup_{r_1, r_2 \to 1} \frac{\log \log F(r_1, r_2)}{-\log(1 - r_1)(1 - r_2)}$$

In a resent paper [3] Banerjee and Dutta introduce the definition of p-th order and lower p-th order of functions of two complex variables analytic in the unit polydisc and generalized the above results for functions of two complex variables analytic in the unit polydisc.

Definition 1.8 Let $f(z_1, z_2) = \sum_{m,n=0}^{\infty} c_{mn} z_1^m z_2^n$ be a function of two complex variables z_1, z_2 holomorphic

in the unit polydisc

$$U = \{(z_1, z_2) : |z_j| \le 1; j = 1, 2\}$$

and

$$F(r_1, r_2) = \max\{|f(z_1, z_2)|: |z_j| \le r_j; j = 1, 2\},\$$

be its maximum modulus. Then the p-th order ρ_p and lower p-th order λ_p are defined as

$$\frac{\rho_p}{\lambda_p} = \lim_{r_1, r_2 \to 1} \sup_{\text{inf}} \frac{\log^{[p]} F(r_1, r_2)}{-\log(1 - r_1)(1 - r_2)}, p \ge 2.$$

When p = 2, Definition 1.8 coincides with Definition 1.7

Theorem 1.9 Let $f(z_1, z_2)$ be analytic in U and having p-th order ρ_p $(0 \le \rho_p \le \infty)$. Then

$$\frac{\rho_p}{1+\rho_n} = \limsup_{m,n\to\infty} \frac{\log^{+[p]} |c_{mn}|}{\log m n}.$$

Theorem 1.10 Let $f(z_1, z_2)$ be analytic in U and having lower p-th order λ_p $(0 \le \lambda_p \le \infty)$. Then

$$\frac{\lambda_p}{1+\lambda_n} \ge \liminf_{m, n\to\infty} \frac{\log^{+[p]} |c_{mn}|}{\log mn}.$$

When p = 2 then from Theorem 1.9 and Theorem 1.10 we get this two theorems.

Theorem 1.11 Let $f(z_1, z_2)$ be analytic in U and having order $\rho(0 \le \rho \le \infty)$. Then

$$\frac{\rho}{1+\rho} = \limsup_{m,n\to\infty} \frac{\log^+ \log^+ |c_{mn}|}{\log mn}.$$

Theorem 1.12 Let $f(z_1, z_2)$ be analytic in U and having lower order $\lambda (0 \le \lambda \le \infty)$.

Then

$$\frac{\lambda}{1+\lambda} \ge \liminf_{m,n\to\infty} \frac{\log^+ \log^+ |c_{mn}|}{\log mn}$$

In this paper we consider a more general situation in the case of analytic functions of several complex variables in the unit polydisc and for which we introduce the following definition.

Definition 1.13 Let $f(z_1, z_2, z_n) = \sum_{m_1, m_2, m_n = 0}^{\infty} c_{m_1 m_2, m_n} z_1^{m_1} z_2^{m_2} z_n^{m_n}$ be a function of n complex

variables z_1, z_2, \dots, z_n holomorphic in the unit polydisc

$$U = \{(z_1, z_2, \dots, z_n) : |z_j| \le 1; j = 1, 2, \dots, n\}$$

and

$$F(r_1, r_2,, r_n) = \max\{|f(z_1, z_2,, z_n)|: |z_j| \le r_j; j = 1, 2,, n\},$$

be its maximum modulus. Then the order ρ and lower order λ are defined as

$$\frac{\rho}{\lambda} = \lim_{r_1, r_2, \dots, r_n \to 1} \sup_{\text{inf}} \frac{\log \log F(r_1, r_2, \dots, r_n)}{-\log(1 - r_1)(1 - r_2) \dots (1 - r_n)}.$$

When p = 2, Definition 1.13 coincides with Definition 1.7.

In this paper we find a similar analytic expression for ρ and λ in terms of the coefficients $c_{m_1 m_2 \dots m_n}$ for several complex variables.

Here $f(z_1, z_2, \dots, z_n) = \sum_{m_1, m_2, \dots, m_n=0}^{\infty} c_{m_1 m_2, \dots, m_n} z_1^{m_1} z_2^{m_2} \dots z_n^{m_n}$ will denote a function analytic in the unit polydisc.

2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1 Let the maximum modulus $F(r_1, r_2,r_n)$ of a function $f(z_1, z_2,z_n)$ analytic in U, satisfy

$$\log F(r_1, r_2, \dots, r_n) < A \left\{ \prod_{j=1}^{n} (1 - r_j) \right\}^{-B}$$
 (1)

 $1 < A, B < \infty$ for all r_i such that $r_0(A, B) < r_i < 1; j = 1, 2,, n$,

Then for all $m_j > m_{j_0}(A, B) > 1; j = 1, 2, \dots, n$

$$\log |c_{m_1 m_2 \dots m_n}| \leq S(A, B) \left(\prod_{j=1}^n m_j \right)^{\frac{B}{B+1}}$$

100

where

$$S(A,B) = (1+2B) \left(\frac{A}{B^B}\right)^{\frac{1}{1+B}}$$

Proof. At first define *n* sequences $\{r_{jm_i}\}$ by

$$(1-r_{jm_j})^{-1} = \left(\frac{m_j}{AB}\right)^{\frac{1}{B+1}}; j=1,2,....n.$$

Then $r_{jm_j} \to 1$ as $m_j \to \infty$ for all $j = 1, 2, \dots, n$.

Also,

$$|c_{m_{1}m_{2}....m_{n}}| = \frac{1}{\prod_{j=1}^{n} (m_{j}!)} \left| \frac{\partial^{m_{1}+m_{2}+.....+m_{n}} f(0,0,....0)}{\partial z_{1}^{m_{1}} \partial z_{2}^{m_{2}} \partial z_{n}^{m_{n}}} \right|$$

$$= \left| \frac{1}{(2\pi i)^{n}} \int_{|z_{1}|=r_{1}} \int_{|z_{2}|=r_{2}} \int_{|z_{n}|=r_{n}} \frac{f(z_{1},z_{2}.....z_{n})dz_{1}dz_{2}.....dz_{n}}{z_{1}^{m_{1}+1}z_{2}^{m_{2}+1}.....z_{n}^{m_{n}+1}} \right|$$

$$\leq \frac{F(r_{1},r_{2}.....r_{n})}{r_{1}^{m_{1}} r_{2}^{m_{2}}.....r_{n}^{m_{n}}}$$

$$= \frac{F(r_{1},r_{2}.....r_{n})}{\prod_{i=1}^{n} r_{i}^{m_{j}}}$$

$$(2)$$

From (1) and (2) we have for all $m_j > m_{j_0}(A, B) > 1$; j = 1, 2,n

$$\log |c_{m_{1}m_{2}....m_{n}}| \leq \log F(r_{1m_{1}}, r_{2m_{2}}.....r_{nm_{n}}) - \sum_{j=1}^{n} m_{j} \log r_{jm_{j}}$$

$$< A \left\{ \prod_{j=1}^{n} \left(1 - r_{jm_{j}} \right) \right\}^{-B} + \left[\sum_{j=1}^{n} m_{j} \left(1 - r_{jm_{j}} \right) \right] [1 + O(1)]$$

$$= A \left(\frac{\prod_{j=1}^{n} m_{j}}{(AB)^{n}} \right)^{\frac{B}{B+1}} + \left[\sum_{j=1}^{n} m_{j} \left(\frac{AB}{m_{j}} \right)^{\frac{1}{B+1}} \right] [1 + O(1)]$$

$$\leq A \left(\frac{\prod_{j=1}^{n} m_{j}}{AB} \right)^{\frac{B}{B+1}} + \prod_{j=1}^{n} m_{j} \left(\frac{AB}{\prod_{j=1}^{n} m_{j}} \right)^{\frac{1}{B+1}} [1 + O(1)]$$

$$= A \left(\frac{\prod_{j=1}^{n} m_{j}}{AB} \right)^{\frac{B}{B+1}} + AB \left(\frac{\prod_{j=1}^{n} m_{j}}{AB} \right)^{\frac{B}{B+1}} [1 + O(1)]$$

$$= [1 + B\{1 + O(1)\}] \left\{ A \left(\frac{\prod_{j=1}^{n} m_{j}}{AB} \right)^{\frac{B}{B+1}} \right\}$$

$$\leq \left\{ (1 + 2B) \left(\frac{A}{B^{B}} \right)^{\frac{1}{B+1}} \right\} \left(\prod_{j=1}^{n} m_{j} \right)^{\frac{B}{B+1}}.$$

Therefore

$$\log |c_{m_1 m_2 \dots m_n}| \leq S(A, B) \left(\prod_{j=1}^n m_j \right)^{\frac{B}{B+1}}$$

where

$$S(A,B) = (1+2B)\left(\frac{A}{B^B}\right)^{\frac{1}{1+B}}$$

This proves the lemma.

Lemma 2.2 Let $f(z_1, z_2,z_n)$ be analytic in U and satisfy

$$|c_{m_1 m_2 \dots m_n}| < \exp \left\{ \sum_{j=1}^n \left(C m_j^D \right) \right\}, \quad 0 < C < \infty, \ 0 < D < 1$$

for all $m_j > m_{j_0}(C, D)$; j = 1, 2,n. Then for all r_j such that $r_{j_0}(C, D) < r_j < 1$; j = 1, 2,n

$$\log F(r_1, r_2, \dots, r_n) < T(C, D) \left(\prod_{j=1}^n \log \frac{1}{r_j} \right)^{\frac{-D}{1-D}},$$

where

$$T(C,D) = C^{\frac{1}{1-D}} D^{\frac{D}{1-D}} [1+o(1)].$$

Proof. For all $m_j > m_{j_0}(C, D)$; j = 1, 2,, n,

$$|c_{m_1 m_2 \dots m_n}| < \exp \left\{ \sum_{j=1}^n \left(C m_j^D \right) \right\}$$

$$= \prod_{j=1}^n \exp \left(C m_j^D \right).$$

Now for $|z_j| = r_j < 1$; j = 1, 2,n

$$F(r_{1}, r_{2}, \dots, r_{n}) < \sum_{m_{1}, m_{2}, \dots, m_{n}=0}^{\infty} |c_{m_{1}m_{2}, \dots, m_{n}}| r_{1}^{m_{1}} r_{2}^{m_{2}} \dots r_{n}^{m_{n}}$$

$$< K(m_{1_{0}}, m_{2_{0}}, \dots, m_{n_{0}}) + \sum_{\substack{m_{1} = m_{1_{0}} + 1 \\ m_{2} = m_{2_{0}} + 1 \\ \vdots \\ m_{n} = m_{n_{0}} + 1}}^{\infty} \left\{ \prod_{j=1}^{n} \exp(Cm_{j}^{D}) r_{j}^{m_{j}} \right\}$$

$$\leq K(m_{1_{0}}, m_{2_{0}}, \dots, m_{n_{0}}) + \prod_{j=1}^{n} \left[\sum_{m_{j} = m_{j_{0}} + 1}^{\infty} \exp(Cm_{j}^{B}) r_{j}^{m_{j}} \right],$$

where $B = \frac{D}{1 - D}$.

Choose

$$M_{j} = M(r_{j}) = \left[\left(\frac{2C}{\log \frac{1}{r_{j}}} \right)^{B+1} \right]; j = 1, 2, ..., n,$$

where [x] denotes the greatest integer not greater than x.

Clearly $M(r_i) \to \infty$ as $r_i \to 1$ for all $j = 1, 2, \dots, n$.

The above estimate of $F(r_1, r_2, \dots, r_n)$ for r_j ; $j = 1, 2, \dots, n$ sufficiently close to 1 gives,

$$F(r_1, r_2, \dots, r_n) < K(m_{l_0}, m_{2_0}, \dots, m_{n_0}) + \prod_{j=1}^n \left[M(r_j) H(r_j) + \sum_{m_j = M_j + 1}^{\infty} r_j^{m_j / 2} \right]$$
(3)

where

$$H(r_j) = \max_{m_j} \left\{ \exp\left(C m_j^{\frac{B}{B+1}}\right) r_j^{m_j} \right\}; \ j = 1, 2, \dots, n$$

for if $m_j \ge M_j + 1$, then

$$m_{j} > \left(\frac{2C}{\log \frac{1}{r_{j}}}\right)^{B+1}$$

$$i.e. \quad Cm_{j}^{\frac{B}{B+1}} < \frac{m_{j}}{2} \log \frac{1}{r_{j}}$$

$$i.e. \quad \exp\left(Cm_{j}^{\frac{B}{B+1}}\right) r_{j}^{m_{j}} < r_{j}^{\frac{m_{j}}{2}}$$

for all j = 1, 2,n.

Therefore the infinite series $\sum_{m_j=M_j+1}^{\infty} r_j^{\frac{m_j}{2}}$ in (3) is bounded by $r_j^{\frac{M_j+1}{2}} \left(\frac{1}{1-r_j^{\frac{1}{2}}} \right)$ for all j=1,2,....n.

Since B > 0, we have

$$-\frac{M_{j}+1}{2}\log\frac{1}{r_{j}}-\log\left(1-r_{j}^{\frac{1}{2}}\right) < -\frac{1}{2}\left(\frac{2C}{\log\frac{1}{r_{j}}}\right)^{B+1}\log\frac{1}{r_{j}}-\log(1-r_{j}) + \log\left(1+r_{j}^{\frac{1}{2}}\right)$$

$$\to -\infty \ as \ r_{i} \to 1.$$

Thus for r_i sufficiently close to 1,

$$\sum_{m_{i}=M_{i}+1}^{\infty} r_{j}^{\frac{m_{j}}{2}} = o(1)$$

for all j = 1, 2,n.

The maximum of $\exp\left(Cm_j^{\frac{B}{B+1}}\right)r_j^{m_j}$ assume at the point $m_j = \left(\frac{BC}{(B+1)\log\frac{1}{r_j}}\right)^{B+1}$ and $H(r_j)$ is given

by

$$\log H(r_{j}) = Cm_{j}^{\frac{B}{B+1}} + m_{j} \log r_{j}$$

$$= \left\{ \frac{C.B^{B}.C^{B}}{(B+1)^{B} \left(\log \frac{1}{r_{j}}\right)^{B}} \right\} - \left(\frac{(BC)^{B+1} \log \frac{1}{r_{j}}}{(B+1)^{B+1} \left(\log \frac{1}{r_{j}}\right)^{B+1}}\right)$$

$$\leq \left\{ \frac{C^{B+1}.B^{B}}{(B+1)^{B} \left(\log \frac{1}{r_{j}}\right)^{B}} \right\}. \tag{4}$$

Thus for r_i ; j = 1, 2,n sufficiently close to 1, from (3)

$$\begin{split} F(r_1, r_2,r_n) < & \prod_{j=1}^n \left[M(r_j) H(r_j) + o(1) \right] \left[1 + \frac{K\left(m_{1_0}, m_{2_0},m_{n_0} \right)}{\prod_{j=1}^n \left[M(r_j) H(r_j) + o(1) \right]} \right] \\ = & \prod_{j=1}^n \left[M(r_j) H(r_j) + o(1) \right] [1 + O(1)]. \end{split}$$

$$\begin{split} \therefore & \log F(r_1, r_2, \dots, r_n) < \sum_{j=1}^{n} \left\{ \log M(r_j) + \log H(r_j) \right\} + O(1) \\ & \leq \sum_{j=1}^{n} \left\{ -(B+1) \log^{[2]} \frac{1}{r_j} + \frac{C^{B+1} . B^B}{(B+1)^B \left(\log \frac{1}{r_j} \right)^B} \right\} + O(1) \; [from (4)] \\ & \leq \sum_{j=1}^{n} \left\{ \frac{C^{B+1} . B^B}{(B+1)^B \left(\log \frac{1}{r_j} \right)^B} \right\} + O(1) \\ & = \frac{C^{B+1} . B^B}{(B+1)^B} \sum_{j=1}^{n} \left(\log \frac{1}{r_j} \right)^{-B} + O(1) \\ & \leq \left[C^{B+1} \left(\frac{B}{1+B} \right)^B \prod_{j=1}^{n} \left(\log \frac{1}{r_j} \right)^{-B} \right] [1 + O(1)] \\ & = C^{\frac{1}{1-D}} D^{\frac{D}{1-D}} [1 + o(1)] \left(\prod_{j=1}^{n} \log \frac{1}{r_j} \right)^{\frac{-D}{1-D}} . \end{split}$$

Therefore

$$\log F(r_1, r_2, \dots, r_n) < T(C, D) \left(\prod_{j=1}^{n} \log \frac{1}{r_j} \right)^{\frac{-D}{1-D}}$$

where

$$T(C,D) = C^{\frac{1}{1-D}} D^{\frac{D}{1-D}} [1+o(1)]$$

This proves the lemma.

3. Theorems

We prove the following theorems.

Theorem 3.1 Let $f(z_1, z_2, ..., z_n)$ be analytic in U and having order $\rho(0 \le \rho \le \infty)$. Then

$$\frac{\rho}{1+\rho} = \limsup_{m_1 m_2 \dots m_n \to \infty} \frac{\log^+ \log^+ |c_{m_1 m_2 \dots m_n}|}{\log \left(\prod_{j=1}^n m_j\right)}.$$
 (5)

Proof. If $|c_{m_1 m_2m_n}|$ is bounded by K for all m_j ; j = 1, 2,n then $\sum_{m_1, m_2,m_n = 0}^{\infty} c_{m_1 m_2,m_n} z_1^{m_1} z_2^{m_2} z_n^{m_n}$ is

bounded by
$$\frac{K}{\prod_{i=1}^{n} (1-r_i)}$$
.

Therefore

$$F(r_{1}, r_{2}, \dots, r_{n}) \leq \sum_{m_{1}, m_{2}, \dots, m_{n}=0}^{\infty} |c_{m_{1}m_{2}, \dots, m_{n}}| r_{1}^{m_{1}} r_{2}^{m_{2}} \dots r_{n}^{m_{n}}$$

$$\leq \frac{K}{\prod_{j=1}^{n} (1 - r_{j})}$$

$$< \exp \left(\frac{1}{\prod_{j=1}^{n} (1 - r_{j})}\right)^{\varepsilon}$$

for any $0 < \varepsilon < 1$ and for all r_j ; $j = 1, 2, \dots, n$ sufficiently close to 1.

Therefore

$$\rho = \limsup_{r_1, r_2, \dots, r_n \to 1} \frac{\log \log F(r_1, r_2, \dots, r_n)}{-\log \left(\prod_{j=1}^n (1 - r_j) \right)} \le \varepsilon$$

since $0 < \varepsilon < 1$ arbitrary, $\rho = 0$ and so (5) is satisfied.

Thus we need to consider only the case

$$\limsup_{m_1 m_2 \dots m_n \to \infty} |c_{m_1 m_2 \dots m_n}| = \infty.$$

In this case all the \log^+ in (5) may be replaced by log. First let $0 < \rho < \infty$ and $\rho' > \rho$.

Then for all r_i ; j = 1, 2,n sufficiently close to 1,

$$\log F(r_1, r_2, \dots, r_n) < \left\{ \prod_{j=1}^n (1 - r_j) \right\}^{-\rho}.$$

Using Lemma 2.1 with $A=1, B=\rho'$ it follows from the above inequality that for $m_j > m_{j_0}(\rho'); j=1,2,...,n$

$$\log |c_{m_1 m_2 \dots m_n}| \leq (1+2\rho') \left(\frac{1}{\rho'^{\rho'}}\right)^{\frac{1}{1+\rho'}} \left(\prod_{j=1}^n m_j\right)^{\frac{\rho}{\rho'+1}}.$$

Therefore

$$\limsup_{m_1, m_2, \dots, m_n \to \infty} \frac{\log \log |c_{m_1 m_2, \dots, m_n}|}{\log \left(\prod_{j=1}^n m_j\right)} \leq \frac{\rho}{1+\rho}.$$

Since $\rho' > \rho$ is arbitrary, it follows that

$$\limsup_{m_1, m_2, \dots, m_n \to \infty} \frac{\log \log |c_{m_1, m_2, \dots, m_n}|}{\log \left(\prod_{j=1}^n m_j\right)} \le \frac{\rho}{1 + \rho}.$$
 (6)

Since $f(z_1, z_2, z_n)$ is analytic in U, the above inequality is trivially true if $\rho = \infty$ and the right hand side is interpreted as 1 in this case.

Conversely, if

$$\theta = \limsup_{m_1, m_2, \dots, m_n \to \infty} \frac{\log \log |c_{m_1 m_2, \dots, m_n}|}{\log \left(\prod_{j=1}^n m_j\right)}$$

then $0 \le \theta \le 1$.

First let $\theta < 1$ and choose $\theta < \theta' < 1$.

Then for all sufficiently large m_j ; j = 1, 2,, n,

$$\log |c_{m_1 m_2 \dots m_n}| < \left(\prod_{j=1}^n m_j\right)^{\theta'}.$$

Using Lemma 2.2 with $C = 1, D = \theta'$ it follows from the above inequality that for all r_j such that $r_{j_0}(\theta') < r_j < 1; j = 1, 2,, n$,

$$\log F(r_{1}, r_{2}, \dots, r_{n}) < \theta^{'} \frac{\theta^{'}}{1 - \theta^{'}} \left(\prod_{j=1}^{n} \log \frac{1}{r_{j}} \right)^{\frac{-\theta}{1 - \theta^{'}}} [1 + o(1)].$$

$$\therefore \log \log F(r_{1}, r_{2}, \dots, r_{n}) < \frac{\theta^{'}}{1 - \theta^{'}} \log(\theta^{'}) + \frac{-\theta^{'}}{1 - \theta^{'}} \log \left(\prod_{j=1}^{n} \log \frac{1}{r_{j}} \right) + \log[1 + o(1)]$$

that is

$$\limsup_{r_{1}, r_{2}, \dots, r_{n} \to 1} \frac{\log \log F(r_{1}, r_{2}, \dots, r_{n})}{-\log \left(\prod_{j=1}^{n} (1 - r_{j})\right)} \leq -\frac{\theta^{'}}{1 - \theta^{'}} \limsup_{r_{1}, r_{2}, \dots, r_{n} \to 1} \frac{\log \left(\prod_{j=1}^{n} \log \frac{1}{r_{j}}\right)}{-\log \left(\prod_{j=1}^{n} (1 - r_{j})\right)}.$$

$$\therefore \qquad \rho < \frac{\theta^{'}}{1 - \theta^{'}}.$$

Since $\theta' > 0$ is arbitrary, it follows that

$$\frac{\rho}{1+\rho} \le \theta = \limsup_{m_1, m_2, \dots, m_n \to \infty} \frac{\log \log |c_{m_1 m_2, \dots, m_n}|}{\log \left(\prod_{i=1}^n m_i\right)}.$$
(7)

If $\theta = 1$, the above inequality is obviously true.

Inequality (6) and (7) together gives (5) when $\limsup_{m_1 m_2 \dots m_n \to \infty} |c_{m_1 m_2 \dots m_n}| = \infty$.

This proves the theorem.

Theorem 3.2 Let $f(z_1, z_2, ..., z_n)$ be analytic in U and having lower order λ $(0 \le \lambda \le \infty)$. Then

$$\frac{\lambda}{1+\lambda} \ge \liminf_{m_1, m_2, \dots, m_n \to \infty} \frac{\log^+ \log^+ |c_{m_1 m_2, \dots, m_n}|}{\log \left(\prod_{j=1}^n m_j\right)}.$$

Proof. Let

$$\liminf_{m_{1}, m_{2}, \dots, m_{n} \to \infty} \frac{\log^{+} \log^{+} |c_{m_{1} m_{2}, \dots, m_{n}}|}{\log \left(\prod_{i=1}^{n} m_{i}\right)} = A.$$
 (8)

First suppose that 0 < A < 1.

From (8), for $0 < \varepsilon < A < 1$,

$$\log |c_{m_1 m_2 \dots m_n}| > \left(\prod_{j=1}^n m_j\right)^{A-\varepsilon}$$

for $m_j > M_j = M_j(\varepsilon)$; j = 1, 2,n.

Also

$$|c_{m_1 m_2 \dots m_n}| \le \frac{F(r_1, r_2, \dots, r_n)}{\prod_{j=1}^n r_j^{m_j}}.$$

$$\therefore \log F(r_1, r_2, \dots, r_n) \ge \log |c_{m_1 m_2, \dots, m_n}| + \sum_{i=1}^n m_i \log r_i.$$
 (9)

Choose

$$m_j = \left(\log \frac{1}{r_j}\right)^{\frac{1}{A-\varepsilon-1}}$$
 where $j = 1, 2, ..., n$.

Then from (9)

$$\begin{split} \log F(r_1, r_2,r_n) > & \left(\prod_{j=1}^n \log \frac{1}{r_j} \right)^{\frac{A-\varepsilon}{A-\varepsilon-1}} - \sum_{j=1}^n \left(\log \frac{1}{r_j} \right)^{\frac{1}{A-\varepsilon-1}} \log \frac{1}{r_j} \\ = & \left(\prod_{j=1}^n \log \frac{1}{r_j} \right)^{\frac{A-\varepsilon}{A-\varepsilon-1}} - \sum_{j=1}^n \left(\log \frac{1}{r_j} \right)^{\frac{A-\varepsilon}{A-\varepsilon-1}} \\ > & \frac{1}{k} \left(\prod_{j=1}^n \log \frac{1}{r_j} \right)^{\frac{A-\varepsilon}{A-\varepsilon-1}} \end{split}$$

where *k* is a suitable constant.

$$\therefore \frac{\log \log F(r_1, r_2, \dots, r_n)}{-\log \left(\prod_{j=1}^n (1-r_j)\right)} > \frac{A-\varepsilon}{A-\varepsilon-1} \frac{\log \left(\prod_{j=1}^n \log \frac{1}{r_j}\right)}{-\log \left(\prod_{j=1}^n (1-r_j)\right)} + O(1).$$

$$\lambda = \liminf_{r_1, r_2, \dots, r_n \to 1} \frac{\log \log F(r_1, r_2, \dots, r_n)}{-\log \left(\prod_{j=1}^n (1 - r_j)\right)}$$

$$\geq \frac{A-\varepsilon}{1-A+\varepsilon}$$
.

Since $0 < \varepsilon < A < 1_{is arbitrary}$,

$$\lambda \geq \frac{A}{1-A}$$
.

This implies

$$\frac{\lambda}{1+\lambda} \ge A.$$

This inequality holds obviously when A=0. For A=1 the above arguments with a number K arbitrarily near to 1 in place of $A-\varepsilon$, give

$$\frac{\lambda}{1+\lambda} = 1.$$

This proves the theorem.

4. Reference

- [1] D. Banerjee. On p-th order of a function analytic in the unit disc. *Proc. Nat. Acad. Sci. India.* 2005, **75(A)**: 249-253.
- [2] D. Banerjee and R. K. Dutta. Relative order of functions of two complex variables analytic in the unit disc. *J. Math.* 2008, **1**: 37-44.
- [3] D. Banerjee and R. K. Dutta. On p-th order of a function of two complex variables analytic in the unit polydisc. *Proc. Nat. Acad. Sci. India*, "in press".
- [4] O. P. Juneja and G. P. Kapoor. Analytic Functions-Growth Aspects. Pitman Advanced Publishing Program, 1985.
- [5] G. P. Kapoor. On the lower order of functions analytic in the unit disc. *Math. Japon.* 1972, **17**:49-54.
- [6] G. R. Maclane. Asymptotic Value of Holomorphic Functions. Houston: Rice University Studies, 1963.
- [7] D. Sato. On the rate of growth of entire functions of fast growth. Bull. Amer. Math. Soc. 1963, 69: 411-414.
- [8] L. R. Sons. Regularity of growth and gaps. J. Math. Anal. Appl. 1968, 24: 296-306.