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Abstract. A new kind of characteristic-difference scheme for Sobolev equations is constructed by
combining characteristic method with the finite-difference method and with the skew linear interpolation
method. The convergence of the characteristic-difference scheme is studied. The advantage of this scheme is
very effectual to eliminate the numerical oscillations and have potential advantages in other equations.
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1. Introduction

Many mathematical physics problems can be described by Sobolev equations, such as in fluid flow, heat
diffusion and other areas of application. The primal numerical solution of using finite difference method and
finite element method for one dimensional Sobolev equations is in [1],[2]. In the year of 1982, Douglas and

Russel ! presented the method of characteristics with finite element or finite difference procedures to solve

convection diffusion equations, and then You'*! applied this characteristics difference element method to
solve Sobolev equation. During the computation, this method used the algebraic interpolation of the last time
step, thus for some problems the stability of the computational scheme is not good enough, even can cause

some numerical oscillation. To avoid happen the phenomena of numerical oscillation, Qin®™ introduced a
new linear interpolation method (see figure 1) in solving convection diffusion problem: use the values of

four points [xH,tH] , (xj ,tHj : (xH,tn] : [xj ,tnj to make bilinear interpolation for the value of point P, .
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Figure 1. Bilinear interpolation Figure 2. Skew linear inpolation

In this paper, we present a improved characteristic-difference method of [5](see figure 2) in solving the

Sobolev equations: only use the values of two points [xj,tnfl] : [xH,tnj (see figure 2) to make Skew linear

interpolation of point P,. Compare with the method in [3],[4], our new method show itself more stability.
Compare with [5], our method is easier to realize in algorithm. This method can also be applied to solve
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convection dominated diffusion equations.

2. Construction of the finite difference scheme

Consider one dimensional initial-boundary Sobolev equations:

8 ou o 8
c(x)@—‘t‘+b( %‘3‘5[‘“ )(;( uj:f(x,t),(x,t)e(O,L)x(O,T]
u(x,0) =u,(x),xe(0,L) (1)

u(0,t)=g,(t),u(L,t)=g,te[0,T]

where a(x),b(x),c(x),d(x) eC[0,L], f(x,t)eL*([0,L]x[0,T]), and there exists positive constants
a,,b",¢,.d,, a(x)> <b", ¢(x)=c,>0, d(x)>d, 20, for Vx [0, L].

The solvability and uniqueness of (1) can be found in [2]. We assume that (1) has a unique solution and

e ou ou
have some necessary smoothness. Denote the characteristic direction of operator C(X)EH)(X)@_ to
X

be A =A(x), and then the characteristic derivative is defined by
0 1 0 0
2 2 o) L) 2|,
o go(x){ (5 * (X)ax}
where ¢(x):[b(x)2+c(x)2}y2. Therefore, the first equation of (1) can then be write as the following

form:
¢(x)g_:_§{a( )Z:: }:f(x,t), O0<x<LO<t<T. @)

In figure 2, suppose the values on n—1 time step is either initial value or already be computed by initial
value. Whenb(x) >0, the characteristic direction at point P, is the direction along PP, where P, is the

intersection point of Q,P , and characteristic direction. Thus by using linear interpolation, we can use the

values at points Q, and P, to get the value at point P,, and then applying finite difference method and

characteristic method to construct an implicit difference scheme. The advantage of this method is: we only
need to make skew linear interpolation in the segment Q,P ,, need not do other extra work to determine the

interpolation point. This technique is better than the normal finite difference method by decreasing the
truncation error along time.

Take space step h>0, mesh grid x;, = jh, j=0,12,---M =[L/h], time step z>0, mesh grid
t,=nz, n=0,1---,N=[T/z], along the characteristic line P,P,, we make following finite difference

discrete:
GU [Xjﬁtn] (X*ﬁt*)
3
(p2] g bl o
where (X*,t*) denotes the coordinate at point P, , x*:xj—bjf/cj, ?; =¢[xjj. Denote c; =C(xj],
- ‘QOQ* P*Q* — ChT
b.=b{x |, a, = ], d=d(x.), j=12,---,M . Thus f = , h =—1
i (xj] a, a[xjj (%), =1 us from ‘Qopo‘ ‘Pop—l‘ we have 7 Chebr

t, =nr —7 . Therefore from
2 —
(x —xj +7l=p7/cC

PP
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we can get the exact expression of (3)

t t h+b.ru(x,t,]-u(x.t
(‘ngj =9, k) (X*’*)+r-”—c’h+b‘ru(x"”] (X*’*)+r-”, @

i h r i
where rjn is the local truncation error:

I’n—( aujn th+ber(Xj,tnj— (X*,t*)
i \%82) : '

Let &.,0, be the backwards and forward finite difference quotients along X direction respectively, and

®)

o. denote the backwards finite difference quotient along t direction, denote by

§X[a5xu]';%[aj+l/2 U(Xj+1>tn] [Xptn] _a (Xptn) [le’tnj]’

h j-v2 h
s ds,su]

lld @u(xﬁl,n] §u(xj,tn) d ou [xl,tn] §u[xJ l,tn]}

R 2 h j-12 h ’

L To 0 o )| "

rj_—[&(a(x) atﬂjJréx[aéXUeréxétu]j. )

By (4)-(6), we have

c,h+bz u(x;.t, |-u(x,.t,]

- - -5 [asu+dssu] = -R], @)

where
fr=f(x,t,), ®)
R =r+r]. )

Omit R;‘ in(7), and then the characteristic difference scheme of solving problem (1) can be established as
follows

h+b.zU"-U? n
C] + iTY j _5’[a5xu+d5xé}u}-: fjn’
h T X )
U?:uo(xjj’ug:gl(tn)’u& ZQZ(tn)’ (10)
j=O’L2’...’M7n=L2’...’N

where U is the numerical solution of u[x t ]

j>n

3. skew linear interpolation
We first point out that U}‘ in (10) are determined by the skew linear interpolation with two
pointsQy, P, let U] =w(x,,t,), where w(x,t) = {U U”‘l}( t) denotes the linear function obtained

-1

by interpolation data {UJ 15U ! l} I, is the linear interpolation operator. The result is as follows:
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n n- Q Rf
I1{Uj—1ﬂuj l}(x*’t*): ‘ :

QP PR
P.Q| " PR h

P.

Apply(12), (13) to (11), then

cjh

‘QOF)* :‘QOQ* _ bJT
‘P—lQO‘ ‘Qopo‘ th+bj’[,
‘P—lp* —1_ ‘QOP* _ th .
‘P—lpo‘ ‘P_lQo‘ th—l—bjr
bz
LU UMt t)=—1° _gh
l{ e }(X*’*) th+bjT P*1+th+bj2'
- bjT N th .
Vo chibr 7 ghtbr !

(11)

(12)

(13)

(14)

(15)

Apply (15) to (10) , We obtain a computational scheme. When h =O(z), the coefficient matrix formed

by difference scheme (10) is strictly diagonal dominated, therefore (10) has a unique solution.

4. convergence analysis

Let W™P denotes Sobolev space with norm||{| - For grid function v, w, define inner product and norm:

M-1
(v,w) = > v,wh,
i1

M-1
[v,w) = _Z(;vjwjh,
j=

[a” 25V

L e

M-1
[a5,V,5W) = D" a;,1,0,V;0W,
=0

By Taylor formula'!, when u eW** (0, T;W**(0,L)),

g

S M 1(||u||W2rx: 0N4,oc))h2.

Apply the Taylor formula with integral remaining term, we get

n_
=

2

V[ = (v,v),

[v”2 =[v,v),

gojz hr

2
=[ad,v,d,v).

o°u

( auj” th+bjru(xj,th—u(X*,t*)
oA h T

i

2(c;h+byr)

|

oA*

)

(16)

(17)

ou) o . .
where [—j is the second tangent derivative of U along segment PP, at some point of line PP, .
J

Combine (9), (16) and (17), then when u e W% (W **),

where K is positive constant,

RI< K129 bl g (P2
2% )
2 o°u
= =max| |
A ey [oLHoT] 04

Denote e’ :u[xj,tn]—U;‘, then from (7) and (10) we get the error equation
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ch+bre

h T
e9=0,e7=0,e}, =0, j=012---M,n=12---N

where €] =u(x,,t,)-W(x,,t,), then from (19)

-5 [ase+dsse] =R 9

ch+bre
h T

-5 [ase+ds 5e] =-R.

ch+b,r
Denote g =%, then g; >¢,, (j=0,1,2,---M). Multiply the last equation by 5.e'h, and sum for

j from 1to M —1, then

n

e _ ¥

(9 ,0e")+[ase",5,0e") +[do,5e",5,0e") =—(R",5.e"), (20)

where

—e;
J(§e )h,[d5,5e",6,5e") >d,

n n-1

e —e

[ac.e",0,0e") =[as,e",o,

)> Zi{[a5xe”,5xe") _[as.e™, 5.,
T
R, R"[”

The difficulty is the estimate of first term in (20) . Since 1‘
€] =u(x,,t,)-w(x,t,)=u(x,t,|-1 {UJ 1,U“‘l}(x 4
:u(x*,t*)—ll{u(xjfl,tn] (xj,tn 1]}(x*,t*)
+I1{u[xH,tn],u(xj,tnfl]}(x*,t*)—II{U;‘fl,U;"l}(x*,t*)

=7+l {e?_l,e;'*l}(x*,t*), (21)
where 7 =u(x,,t,|-1 {u[xjfl,tn),u[xj,tnflj}( X,.t,), from (15) and (21), we have:
G
g; - :gj[ej_rj_ll{e—la J}(Xk /T
[ biT gn Cih en—l]/
= — L — : T
=l T b8 T onen
_th+bj2'[ bz @ )t ¢c;h _ G e ety
~ th ‘¢h+br s c, +bjf BRI
TP . Cih+bz_,
=5 (& e+ Co8 ——— ),
en_e* n n n = n n n = G h+b z-—n
(9 ,6e") =(cse",5e")+ D b, (e] —e] )oe] - %n el (22)
=1 j=1
Therefore

se")-[ase",5,e")}

2
Rn

|
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Mtch+bir 0
> L sel. (23)
T

j=1

+

M-1
n n n
+ Z b, (e] —e] ,)oe]
We also need to estimate error term 7 of the skew linear interpolation.

TN Y
1

_[@j 1brh(h +7°]
2\ ap? ); A 2 (c;h+byz)

o%u
op° i

PQ,|=

(24)

2 n
. . u .
where p denotes the direction of P,Q,, (pj denote the value at some point on segment P ,Q, of
7

second direction derivative along the direction of P,Q,. Whenh=0(7), by(24), we have

2
maX|rJ|<M2[ m}ax apu hz, (25)

where M, is a positive constant. Notice that the boundedness of b(x) , apply (25) to(23),

5" ~[ase™, 5"}

2
Rn

|

where constant C depends on €.

Multiply by 27, take ¢ = %0 ,and sum for n, applying (18), (25), we have

[oe

+ ”u”vvzv” (W"”)](T + hz)}z

L (L)

ol
7|

op

2
&' z+Llmax (c;h+b;7)*- max
i [Xjo2.%; WMthts]
2

Denote | — = ? , notice that‘ - " S‘{éxe” , and then applying discrete Gronwall
ey oLKoT][OP
inequality, we have
n 2 i n
t T)Z +“: X
2 0
< M{[ 8/12 +||u||W2,w0N4,x)](r+h ) +|l— (r+h)},  (26)
L™ (L) L™ (L)

where M is positive constant.
The upward discussion based on bj > 0. When bj < 0, similar discussions can also be made and establish

the corresponding computational schemes.
Theorem 1 Suppose that the solution of problem (1) satisfies
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o
0A? op?
{U ;‘} is the solution of skew linear interpolation characteristic difference scheme (10), then while h=0(7),

u W (W*), e L (L),

the error estimates satisfies (26) .

Remark If d(x) =0, the problem (1) degenerate to a convection diffusion problem, the computation
scheme (10) and the conclusion of theorem 1 also hold for convection diffusion equations.

5. Numerical examples
Consider following Sobolev equation:

ou ou 0 ,0u o
—+———(—+
ot oOx oOx oOx oxot
Take the solution of this equation to be:
U(X t) =10—16e20(x+t)‘
The initial-boundary value conditions and f (X,t) be determined by solutionu(X,t). Solve this problem
by using skew linear interpolation characteristic difference method (10) and the characteristic difference

)= f(xt), (x,t) €[0,]x (0,0.99).

L 1 1 . . .
method given in[4], when h = %,r = 0 we can compare the numerical result with the accurate solution.

M 1
For example, for t =0.99, denote err= (Z (U, —Uj)z)fh the average absolute errors, then the average
j=L
absolute errors are 0.0212 and 0.0352 with respect to the two methods. Table 1 listed some results at certain
grid points fort =0.99:

Table 1. The numerical compare of finite difference schemes

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
u 2.935e-7 2.169e-6 1.603e-5 1.185e-4 8.74%-4  6.465e-3  4.777e-2  3.530e-1 2.609
LCD 2.932e-7 2.168e-6 1.614e-5 1.180e-4 8.753e-4 6.471e-3  4.781le-2  3.576e-1 2.621
SLCD 2.933e-7 2.170e-6 1.612e-5 1.182e-4 8.750e-4 6.467e-3  4.779%-2  3.538e-1 2.613
Computations show the skew linear interpolation characteristic difference method is an efficient
algorithm, compared with [4], this method is more stable, and it is simpler than [5]. This method can also be
used to solve convection diffusion equations with variable coefficients.
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