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Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic 

problem: 
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p  denotes the p-Laplacian operator defined by )|(| 2 zzdivz p
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is a real parameter , the weight )(xm

 
is a bounded function with 0|||| m  and 

a(x), b(x) are continuous functions which change sign in  . 

1. Introduction 

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear 

elliptic problem: 
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where 
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are satisfying  max ,0a a    0and  max ,b b     0 . 

Problems involving the “p-Laplacian” arise from many branches of pure mathematics as in the theory of 

quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical 

physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to )2,1(p while 

dilatant fluids correspond to 2p . The case p = 2 expresses Newtonian fluids [5].  

We are motivated by the paper of Wu [14], in which problem (1) was discussed when 

2,1,1  pbm , and  221  . The authors proved that, there exists 00  such that if the 

parameter   satisfy  

00   , then problem (1) for 2,1,1  pbm  and  221  , has at 

least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem 

(1) with m 1,b 1 , 2p ,and  pp 2 .They obtained at least two positive solutions. In this 

paper, we discuss the problem (1) with m 1,b 1 , 21  p  and  pp 21  . The change in 
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  completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at 

least two solutions 

0u and 

0u such that 00 
u

 
in  and 00 

u when the parameter  belongs to a certain 

subset of  R.  

 In the case when 2p , similar problems (with Dirichlet or Neuman boundary condition) have been 

studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12] , by using variational methods and by 

Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the 

ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on 

elliptic problems involving the p-Laplacian. 

2. Variational setting 

Let ss WW ,1

0

,1

0 )(  ,  0s  , denote the usual Sobolev space. In the Banach spac WW p )(,1

0
we 

introduce the norm 

 
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 ppp

W dxuxmuu

1

)||)(||(||||  

which is equivalent to the standard one. First we give the definition of the weak solution of  Eq. (1). 

Definition 2.1. We say that Wu is a weak solution to (1) if for any Wv we have 
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It is clear that Problem (1) has a variational structure. Let RWJ :  
be the corresponding energy 

functional of problem (1) is defined by 

1 1 1
( ) ( ) ( ) ( )J u M u A u B u

p


 
  

 
where 

                      
( ) (| | ( ) | | ) , ( ) ( ) | |p pM u u m x u dx A u a x u dx

 

    
 

and 

dxuxbuB 


 ||)()(  

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J . Let 

I be the energy functional associated with an elliptic problem on a Banach space X. If I is bounded below and 

I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding 

elliptic problem. However, the energy functional J , is not bounded below on the whole space W, but is 

bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1). 

Consider the Nehari minimization problem for }0{\R , 

  NuuJ  :)(inf , 

where  0)(),(:}0{\  uuJWuN 
. It is easy to see that 

Nu if and only if 

                                               )()()( uBuAuM  .                                                      (2) 

Note that N  contains every nonzero solution of problem (1). Define 

uuJug ),()( 
 . 

Then for u N , 

                                          )()()(),( uBuAupMuug                                                  (3) 

                                                      )()()()( uBpuAp                                       (4) 

                                             )()()()( uBuMp                                     (5) 

                                                      )()()()( uAuMp   .                                  (6) 
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Now, we split N into three parts: 

 0),(:  uugNuN 
 

 0),(:0  uugNuN 
 

 0),(:  uugNuN   

To state our main result, we now present some important properties of 0,  NN   and 

N . 

Lemma 2.2. There exists 0  such that for 
00 || ||a    , we have 0N  . 
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, where 

1C , 
2C  are positive 

constants  and specified laters, there exists   with 
0||||0   a  such that  

0N . Then for 0

Nu  

we have 
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By the Sobolev imbedding theorem, 
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By using (9)–(10) in (7)–(8) we get 
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This implies 
0||||  a , which is a contradiction. Thus, we can conclude that there exists 0  such 

that for 
 ||||0 0 a , we have  

0N .    

By Lemma 2.2, for  ||||0 0 a
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Lemma 2.3. We have 

(i) If ,u N

  then 0)( uB ; 

(ii) If ,u N

  then 0)( uA . 

Proof. (i) We consider the following two cases: 

Case ( )i a : ( ) 0A u  . We have 

0)()(  uMuB . 

Case ( )i b : ( ) 0A u  . Since  Nu  , by (5), we have 

0)()()()(  uBuMp   
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0)()( 



 uM

p
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 . 

(ii) We consider the following two cases: 
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Case ( )ii a : ( ) 0B u  , we have 

0)()()(  uBuMuA  

Case ( )ii b : ( ) 0B u  . By (4), we have 

0)()()()(  uBPuAp  , 

which implies 
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It follows that the conclusion is true.      

Lemma 2.4. Suppose that 0u  is a local minimizer for J on N . Then, if ,0 Nu 
0u is a critical point of 

J
. 

Proof. If 0u  is a local minimizer for J  on N , then 0u  is a solution of  the optimization 

Problem minimize ( )J u
 subject to  ( ) 0g u  . 

Hence, by the theory of Lagrange multipliers, there exists R such that 

)()(  uguJ 
  in )(1 W  

Here )(1 W is the dual space of the Sobolev  space W . Thus, 

WW uuguuJ  ),(),(  . 

   But 0),(  Wuug
, since 0

Nu . Hence 0 . This completes the proof.   

 Then we have the following result. 

Lemma 2.5. J is coercive and bounded below on .N
 
 

Proof.  If Nu , it follows from (2) and the Sobolev embedding theorem 
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                       (11) 

Thus )(uJ  is coercive and bounded below on N .     
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Proof. (i) Let  Nu  . By (6) 
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(ii) Let  Nu , by (6) and (9) we have 
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By Lemma 2.5, we have 
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Thus, if *0 || ||a    , then 0J k  , for all u N

 , for some 0 0 1 2( , , , ) 0k k C C   . This 

completes the proof.     

For each Wu  with 0)( uB , we write 
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Then we have the following lemma. 

Lemma 2.7. For each Wu with 0)( uB  and  ||||0 0 a , we have 

(i) if 0)( uA , then there is a  unique 
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we have ( ) 0E t   at maxtt  , ( ) 0E t  for ),0[ maxtt and ( ) 0E t  for ),( max  tt . Then ( )E t  

achieves its maximum at 
maxt , increasing for ),0[ maxtt and decreasing for 
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(i) ( ) 0A u  : There is a unique 
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This completes the proof.     

3. Existence of solutions 

Now we can state our main result. 

Theorem 3.1. If the parameter λ satisfy 
 ||||0 0 a , then problem (1) has at least two   solutions 



0u and 

0u such that 00 
u  in   and 00 

u . 

The proof of this Theorem will be a consequence of the next two propositions. 

Proposition 3.2. If  ||||0 0 a , then the functional J
 has a minimizer 



0u
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
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(i) 0( )J u 
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 (ii) 
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
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0
such that 

0u is a solution of problem (1) and 
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is as in (13),  since ( ) ( )uk t E t  . Since 
0( ) 0B u   , by Lemma 2.7, there is unique max0t t   such that 
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By (16) and (17) we obtain 0)( 0 tk
nu

for n sufficiently large. Since  Nun
 , we have 1)(max nut . 

Moreover, 

0)()()()1(  nnnu uAuBuMk
n

, 

and )(tk
nu

is decreasing for ),( max

 ttt . This implies 0)( tk
nu  

for all   ,1t  and n sufficiently large. 
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We obtain 1)( 0max  tut . But   Nut 00
 and 

)(inf)( 0
0

00





  tuJutJ
t


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


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                                                        0uun
 strongly in W. 
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Thus 
0u  is a minimizer for J  on N

 . Since 
0 0( ) (| |)J u J u 
  and 

0| |u N

   ,by Lemma 2.4 we 

may assume that 


0u
 is a nontrivial nonnegative solution of Eq. (1).    

Next, we establish the existence of a local minimum for J  on 

N . 

Proposition 3.3. If 
 ||||0 0 a , then the functional J

 
has a minimizer 

0u and it satisfies 

(i) 
0( )J u 
   

(ii) 

0u is a nontrivial nonnegative solution of problem (1), such that 00 
u

 
in Ω and 00 

u . 

Proof.  Let  nu
 
be a minimizing sequence for J on 

N , i.e )(inf)(lim uJuJ
Nun

n





 . Then by Lemma 

2.5 and the Rellich–Kondrachov theorem, there exist a subsequence  nu and Wu 

0
such that 

0u is a 

solution of problem (1) and 

                                             nu  

0u   weakly in W, 
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




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By (12) and (18) there exists a positive number 
0  such that 

0)( nuB . 

This implies 

                    00 )( uB  .                                                          (19) 

Now we prove that  0uun
strongly in W. Suppose otherwise, then 

.||||inflim|||| 0 Wn
n

W uu
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   

By Lemma 2.7, there is unique 0t such that   Nut 00
. Since    Nun

, )()( nn tuJuJ    for all 

0t , we have 


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and this is a contradiction. Hence   0uun  
strongly in W .This implies 

  nasuJuJ n  )()( 0
 

Since )()( 00

  uJuJ 
and   Nu || 0

, by Lemma 2.4 and (19) we may assume that 

0u is a nontrivial 
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nonnegative solution of  Eq. (1).     

Proof of Theorem 3.1. By Propositions 3.2 and 3.3, we obtain Eq. (1) has two nontrivial nonnegative 

solutions 

0u and 

0u such that   Nu0
and   Nu0

. It remains to show that the solutions found in 

Propositions 3.2 and 3.3 are distinct. Since    NN , this implies that 

0u  and 

0u are distinct. This 

concludes the proof. 
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