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Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic

problem:
—Au+m(X)uP™ = 2a(x)u“t +b(X)u”’t, x e Q
u=0,xeoQ2
where A denotes the p-Laplacian operator defined by A z =div(|Vz|"? Vz), 1<p<2, QcR"isa

bounded domain with smooth boundary , 1< p<2<f<a<p (p’ — PN it nsp, p=ooif
n-p

n<p), AeR\{0}is a real parameter , the weight m(x) is a bounded function with || m||,> 0 and

a(x), b(x) are continuous functions which change sign in Q.

1. Introduction

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear
elliptic problem:

—Au+m(x)uPt = da(x)u*t +b(x)u’*, xeQ
u=0,xeoQ oy

where A denotes the p-Laplacian operator defined by A z=div(|Vz|"?Vz), 1< p<2, QcR"is a

bounded domain with smooth boundary, 1<p<2<fB<a<p (p =PV if n>p, p'=o if
’ n — p

n=p), 4R\{0}, the weight m(x) is a bounded function with || m|_>0and a(x),b(x) e C(Q)
are satisfying a* = max {+a,0} £0and b* = max {b,o} £0 .
Problems involving the “p-Laplacian” arise from many branches of pure mathematics as in the theory of

quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical
physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to p e (1,2) while

dilatant fluids correspond to p > 2. The case p = 2 expresses Newtonian fluids [5].

We are motivated by the paper of Wu [14], in which problem (1) was discussed when
m=1 b=1 p=2,and1<a <2< B<2". The authors proved that, there exists 1, > 0such that if the

parameter A satisfy 0 < A4 < 4, , then problem (1) for m=1,b=1p=2 and 1<a <2< B <2*, has at
least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem
(1) with m#£1,bZ£1, p>2,and 2< < p<a < p*.They obtained at least two positive solutions. In this

paper, we discuss the problem (1) with m£1,b#£1, 1< p<2 and 1< p<2< B <a < p* . The change in
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a completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at
least two solutions ug and u, such that uy; >0 in and u? = 0when the parameter A belongs to a certain
subset of R.

In the case when p =2, similar problems (with Dirichlet or Neuman boundary condition) have been

studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12] , by using variational methods and by
Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the
ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on
elliptic problems involving the p-Laplacian.

2. Variational setting

Let W, (Q) =W01'S,(s> 0) , denote the usual Sobolev space. In the Banach spac WP (Q2) =W we
introduce the norm

lull=([(Vu P +m(x) [u]* )

which is equivalent to the standard one. First we give the definition of the weak solution of Eq. (1).
Definition 2.1. We say that U € W is a weak solution to (1) if for any v € W we have

I(| Vu [P*VuVv+m(x) [u|P? uv)dx = AI a(x) |u|*Puvdx + _[b(x) |u |’ uvdx

Q Q Q

It is clear that Problem (1) has a variational structure. Let J, :W — R be the corresponding energy
functional of problem (1) is defined by

3, =My -t aw -1
p P B

where
M (u) =j(| vu P +m(x) |u[P)dx , A(u) = /Ij.a(x)lu |“dx

and
B(u) = jb(x) lu [#dx

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J, . Let

I be the energy functional associated with an elliptic problem on a Banach space X. If | is bounded below and
I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding

elliptic problem. However, the energy functional J,, is not bounded below on the whole space W, but is
bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1).

Consider the Nehari minimization problem for 1 e R\{0},
y,=inf{J,(u):ueN,},
where N, = {u eW\{0}: (I} (u),(u)) = 0}. Itis easy to see that u e N, if and only if
M(u)— A(u) =B(u). 2)
Note that N, contains every nonzero solution of problem (1). Define
9,(u)=(J;(u)u).
ThenforueN,,

<9} (u),u>= pM(u) - cA(u) - B() ®3)
=(p—a)AU) - (8- p)B(U) (4)
=(p—a)M(u) - (B - )B(u) (%)
=(P=AM() —(a - P)A). (6)
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Now, we split N , into three parts:
N :{ ueN, :(g’,(u),u) >O}
N? ={ ueN, (g’ (u),u) =0}
N; :{ ueN,:(g’,(u),u) <0}
To state our main result, we now present some important properties of N7,N? and N .

Lemma 2.2. There exists &, such thatfor 0 < s, < 4| a||,. we have N} =¢.

a-p
Proof. Suppose otherwise, then for s, 2[ o —ﬂp }p [ ps—p } where C,, C, are positive
(- B)CS bl (ax - B)CY

constants and specified laters, there exists 2 with 0< 4| a||, <&, such that N° = ¢ . Then for ue N7
we have

0=<g;(Wu>=(p- HM ) + (B~ a)A) -
=(p—a)M(u) +(a—B)B(u) (8)
By the Sobolev imbedding theorem,
A s Al el llulz=AC llall.l ully 9)
and
B(u) bl lullz<Co b Iully (10)

By using (9)—(10) in (7)—(8) we get

1 1
||u||wz[p‘ﬂj“( - ]
a—p) \Cialal.
o 1
_ iy =
lull,< [Mj CL b))
a—p

This implies 2] a||,, <&, , which is a contradiction. Thus, we can conclude that there exists ¢, >0 such

and

that for 0< &, <A| a|l, , we have N = ¢. 0

O<50</1||a||mwewrite N, =N UN;

By Lemma 2.2, for 4 and define

y,=inf J, (u);y, =inf J, (u) ;

ueNj; ueN;

Lemma 2.3. We have
(i) If ue N}, then B(u) >0;
(i) If ue N, then A(u)>0.
Proof. (i) We consider the following two cases:
Case (i—a): A(u)=0.We have
B(u)y=M(u)>0.
Case (i—b): A(u) #0. Since ue N; , by (5), we have
(p—a)M(U)+(a—p)B(u) >0
which implies
a—p

B(u) > M(u)>0-

(if) We consider the following two cases:
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Case (ii—a): B(u) <0, we have
A(u)=M(u)—-B(u)>0
Case (ii—b): B(u) > 0. By (4), we have

(p—a)A)+(P-p)B(u) <0,
which implies

AW >P2=Bsuy>o.
(24

It follows that the conclusion is true. m
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Lemma 2.4. Suppose that U, is a local minimizer for J,on N,. Then, if U, € N, , u,is a critical point of

J;

Proof. If u, is a local minimizer for J, on N, then u, is a solution of the optimization

Problem minimize J, (u) subjectto g,(u)=0.

Hence, by the theory of Lagrange multipliers, there exists A e R such that
Ji(U) =Ag)(u.) inw(Q)

Here W () is the dual space of the Sobolev space W . Thus,

<J) (U),u>,=A<dg,u)u>,.

But < g, (u),u >, = 0,since ug N°. Hence A = 0. This completes the proof.

Then we have the following result.

Lemma 2.5. J, is coercive and bounded below on N,

Proof. If ue N, it follows from (2) and the Sobolev embedding theorem
-a
O [ﬂ pj <u>—(ﬂ—] A)
Bp Pa

[/’ Iojlvl(u) (ﬂ jcanan luli

£p pa
— u _ p-a a %
—( i ]M(U) ( e Jﬂcl Iall, (M(u))

Thus J, (u) is coercive and bounded belowon N,. O

a-P

Lemma 2.6. Let & = [%)Pﬁ 8. Thenif 0< 8™ < Alja||, We have

i)y >0
(i) y~ =k, , for some k, =k, (e, 3,C,,C,).
Proof. (i) Let u e N . By (6)

My > Z=D ey,
(p—a)

and so

(11)
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1 1 1 1
J,W=|=—=|MW)+| ——— [B)
P « a p

s[“‘ij(u){ﬁ_“][(p_“)M(u)}
pa aff ) (B-a)
:[a;p+ p—a}M (u)

pPo af

pap

Thus y; >0.
(i) Let u e N, by (6) and (9) we have

M) <2 %Buy<Z=%cs(b], ) u
p—a p—a

This implies
1

||u||W>{ P—a }“for all ueN;. (12)
(B-a)C(Ibll..)

By Lemma 2.5, we have

J,u)ullg K%ﬂ lu g™ —(ﬁa—‘;JCf (Ala L)}

N

>( pP-a j’gﬂip [p—ﬁJ[ p-a J_p
(B-a)CL(Ib].) po | (B-a)ct(b].)

—(@;ﬁ“jcla (2lal,)]

Thus, if 0<&" <A|all,, then J, >K,, for all ue N, , for some k, =k,(«, 5,C,,C,)>0. This
completes the proof. U
For each u e W with B(u) >0, we write

t = (MJW >0. (13)
(B—a)B(u)

Then we have the following lemma.
Lemma 2.7. For each u e W with B(u) >0 and 0< 35, <A| al|l, , we have

(i) if A(u) <0, then thereisa unique O<t" <t suchthat t'ue N; and

J,(t"u)=supJ, (tu)
0<t<t,,
(ii) if A(u) >0, then there are unique 0<t* =t (u) <t <t~ suchthatt'ue N; ,t'ue N} and
J,(t"u)= sup J, (tu), Jﬂ(t’u):itrlg J, (tu)

0<t<ta

Proof. Fix ueW with B(u) >0. Let
E(t)=-t"*M(u)+t"“B(u) for t>o0. (14)
Clearly, E(t) > —wast — (+) Since

E'(t) = —(p — a)t" M (U) + (S — )" “B(u) »
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we have E'(t)=0 at t=t_, E'(t)>0for te[0,t)and E'(t)<0 for te(t, o). Then E(t)
achieves its maximum at t__ , increasing for t €[0,t,,, ) and decreasing for t e (t,, ,) . Moreover,

pa f-a
E(t )Z((p_a)M(u)jﬂ_aM(U)—((p_a)M(u)jﬂ_pB(U)
™ (B-a)B(u) (B-a)A)
[ o p-a =
e ((p—a)jﬂ-a_(p—ay—p lul )’ (15)
“1\(B-a) B-a B(u)

vl 2l )
“Ulbl. B-a \(B-a)C;

(i) A(u)<0:Thereisaunique O<t* <t suchthat E(t")=—AA(u)and E'(t") > 0. Now,
—(p—a)M(t'u)+(B-a)B(t"u) = ()"

[ (p—e)(t)P M (u)+ (B-e)(t") < *B()):
=(tH"E'(t")>0

and
<JL(tu),t'u>=(t")" M (u)— (t")* A(u) — (t")’ B(u)
=) @) M) + () BU) + AW)
=—(t")*[Et") + Aw)]=0

Thus, t'ueN;.

Since for t<t .., we have
—(p-AIM () + (e - p)B(u) > 0
d2
W‘Jl(tu) <0
and
d

a\]l(tu) =tPIM (u) —t“ AU) —t**B(u) =0 for t=t-.
Thus, J,(t"u)= sup J,(tu):

(i) A(u)>0.By (15) and
E(—o0) =0 < A(u)
<c(Alall)lul

<||u||3z[ij“(ﬂ_pj[ (p_“)ﬂJﬁp
i) \p—a)\(B-ax!

<E(te)
for 0<8, <A all,.there are unique t* and t~ suchthat 0 <t* <t <t ,
Et")=AU)=E(t")
E't")>0>E'(t")
We have t'ueN;,tueN, , and J,(t'u)>J,(tu)>J,(t'u) for each te[t*,t‘] and
J,(t'u)>J, () foreach 0<t<t*. Thus,

J,(t"u)= sup J,(tu), Jl(t’u)zitrlg‘]l(tu) .

O<t<t .
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This completes the proof. O

3. Existence of solutions

Now we can state our main result.
Theorem 3.1. If the parameter A satisfy 0< 5, < 4| all,,, then problem (1) has at least two solutions

ug and u, such that u >0 in Q and u; =0.

The proof of this Theorem will be a consequence of the next two propositions.

Proposition 3.2. If 0<d, <Al a||w’ then the functional Js has a minimizer Up in I\uand it satisfies
(i) J,(U) =7,
(i) u, isa nontrivial nonnegative solution of problem (1), such that u; >0 in  and u, #0.
Proof. By Lemma 2.5, J, is coercive and bounded below on N . Let {u_} be a minimizing sequence for
J,on N, ie, lim,_,, J,(u,)=inf_ J, (W) Then by Lemma 2.5 and the Rellich-Kondrachov
theorem, there exist a subsequence {u_ } and u; <w such that ug is a solution of problem (1) and
u, —>u, weakly in W,
u, —>u; strongly in L=(oandin L/(Q).
This implies
B(u,) = B(uy) as N — +oo
A(u,) = A(uy) as n—+w
Let B(u,) > 0. In particular u; = 0. Now we prove that u, — u, strongly in W. Suppose otherwise, then
U by < liminf 1y, I, (16)
Fix U €W with B(u) > 0. Let
k,() =E®) +A),
where E(t) is as in (14). Clearly, k,(t) >—oas t—0", and k,(t) —> A(u) as t-—>oo .( Since

k. (t) = E'(t), By similar argument as in the proof of Lemma 2.7, we have k,(t) achieves its maximum at

tax . k, (t) isincreasing fort e (0, tmax ) and decreasing for t € (fm,0) , Where t e (0, t mx )
oo :((p—a)M(u)]wlp) -0
(B—-a)B(U)
is as in (13), sincek’ (t)= E'(t) - Since B(u;)>0 , by Lemma 2.7, there is unique t; > tmax such that
t,u, € N; and
3, (tUg) =inf J,, (tu,)

Then

K. (tg) =—(ts)"“M(ug) +(t;)”“B(uy) + AUy )

=—(t;) (M (tyuy) — B(tyuy ) — Atug ) =0
By (16) and (17) we obtain k, (t,) > O for n sufficiently large. Since u, € N, , we have t.(u,) <1.

. (17)

Moreover,
k, @=-M(u,)+B(u,)+A(,)=0,
and k, (t)is decreasing for t € (t,,,,t"). This implies k, (t) <0 for all t [1,0) and n sufficiently large.
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We obtain tmx (U,) <t~ <1.But t;u; e N; and
3.(tu,) = inf 3, (tu,)
This implies
32 (GUg) < I3, (Ug) <lim 3, (u,) =7,
which is a contradiction. Hence
u, —ug strongly in W.
This implies
J,U) >3, (U) =7,
Thus u, is a minimizer for J, on N;. Since J,(u;)=J,(u, )and |u, e N, ,by Lemma 2.4 we

may assume that Yo is a nontrivial nonnegative solution of Eq. (1). [
Next, we establish the existence of a local minimum for J, on N ;.

Proposition 3.3. If 0 <&, < 4| a||.,, then the functional J, has a minimizer u, and it satisfies
1) J,(u)=7;
(ii) u, is a nontrivial nonnegative solution of problem (1), such that u; >0 inQand u, #0.

Proof. Let {un} be a minimizing sequence for J,on N}, i.e |im J,(u)= infLI N (u) - Then by Lemma
n—oo €Ny

2.5 and the Rellich—-Kondrachov theorem, there exist a subsequence {un}and U, €W such that u, is a
solution of problem (1) and
u, = u, weakly in W,

u, — Ug strongly in L*(©)and in L7 (Q).

This implies
A(u,) > A(u;) a n—+w
B(u,) — B(uy) as n— +oo .
Moreover, by (6) we obtain
(p—a) : 18
B M )
W) > {5y M ) (18)
By (12) and (18) there exists a positive number 7, such that
B(un) > ’70 )
This implies
B(ug) =7, - (19)

Now we prove that u, — u, strongly in W. Suppose otherwise, then
Ilug lly < liminf |, lly
By Lemma 2.7, there is unique t > Osuch that t;u, € N . Since {u,}e N;, J,(u,)>J,(tu,) for all
t >0, we have

J,(tuy) <limJ,(tyu,) <limJ, (u,) =y,

and this is a contradiction. Hence u, — u, strongly in W .This implies
J,u)—>J, )=y, a n—ow
Since J,(uy) =J,(ugpand |uy |e N, by Lemma 2.4 and (19) we may assume that uj is a nontrivial
O

Ug
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nonnegative solution of Eg. (1).
Proof of Theorem 3.1. By Propositions 3.2 and 3.3, we obtain Eq. (1) has two nontrivial nonnegative
solutions u, and u, such that uy e Ny and u; € N . It remains to show that the solutions found in

Propositions 3.2 and 3.3 are distinct. Since N; "N = ¢, this implies that u; and u, are distinct. This
concludes the proof.
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