

Existence of Multiple Solutions for a Class of Nonlinear Elliptic Problems Involving the P-Laplacian

G. A. Afrouzi⁺ and Z. Valinejad^{*}

Islamic Azad University, Ghaemshahr Branch, P.O. Box 163, Ghaemshahr, Iran Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran Babolsar, Iran.

(Received October 23, 2010, accepted December 2, 2010)

Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic problem:

$$\begin{cases} -\Delta_p u + m(x)u^{p-1} = \lambda a(x)u^{\alpha-1} + b(x)u^{\beta-1}, x \in \Omega \\ u = 0, x \in \partial \Omega \end{cases}$$

where Δ_p denotes the p-Laplacian operator defined by $\Delta_p z = div(|\nabla z|^{p-2} |\nabla z|)$, $1 , <math>\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary, $1 (<math>p^* = \frac{pn}{n-p}$ if n > p, $p^* = \infty$ if

 $n \le p$), $\lambda \in R \setminus \{0\}$ is a real parameter, the weight m(x) is a bounded function with $||m||_{\infty} > 0$ and a(x), b(x) are continuous functions which change sign in $\overline{\Omega}$.

1. Introduction

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear elliptic problem:

$$\begin{cases}
-\Delta_{p}u + m(x)u^{p-1} = \lambda a(x)u^{\alpha-1} + b(x)u^{\beta-1}, x \in \Omega \\
u = 0, x \in \partial\Omega
\end{cases}$$
(1)

where Δ_p denotes the p-Laplacian operator defined by $\Delta_p z = div(|\nabla z|^{p-2} \nabla z)$, $1 , <math>\Omega \subset R^n$ is a bounded domain with smooth boundary, $1 , <math>(p^* = \frac{pn}{n-p} \text{ if } n > p, p^* = \infty \text{ if } n = p)$, $\lambda \in R \setminus \{0\}$, the weight m(x) is a bounded function with $||m||_{\infty} > 0$ and $a(x), b(x) \in C(\overline{\Omega})$

Problems involving the "p-Laplacian" arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to $p \in (1,2)$ while dilatant fluids correspond to p > 2. The case p = 2 expresses Newtonian fluids [5].

We are motivated by the paper of Wu [14], in which problem (1) was discussed when $m \equiv 1$, $b \equiv 1$, p = 2, and $1 < \alpha < 2 < \beta < 2^*$. The authors proved that, there exists $\lambda_0 > 0$ such that if the parameter λ satisfy $0 < \lambda < \lambda_0$, then problem (1) for $m \equiv 1, b \equiv 1, p = 2$ and $1 < \alpha < 2 < \beta < 2^*$, has at least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem (1) with $m \not= 1, b \not= 1$, p > 2, and $2 < \beta < p < \alpha < p^*$. They obtained at least two positive solutions. In this paper, we discuss the problem (1) with $m \not= 1, b \not= 1$, 1 and <math>1 . The change in

are satisfying $a^{\pm} = \max\{\pm a, 0\} \neq 0$ and $b^{\pm} = \max\{\pm b, \infty\} \neq 0$.

⁺ Corresponding author. *E-mail address*: afrouzi@umz.ac.ir.

^{*} E-mail address: valinejadzahra@yahoo.com.

 α completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at least two solutions u_0^+ and u_0^- such that $u_0^{\pm} \ge 0$ in Ω and $u_0^{\pm} \ne 0$ when the parameter λ belongs to a certain subset of R.

In the case when p=2, similar problems (with Dirichlet or Neuman boundary condition) have been studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12], by using variational methods and by Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on elliptic problems involving the p-Laplacian.

2. Variational setting

Let $W_0^{1,s}(\Omega) = W_0^{1,s}$, (s>0), denote the usual Sobolev space. In the Banach spac $W_0^{1,p}(\Omega) = W$ we introduce the norm

$$||u||_{W} = \left(\int_{\Omega} \left(|\nabla u|^{p} + m(x)|u|^{p}\right) dx\right)^{\frac{1}{p}}$$

which is equivalent to the standard one. First we give the definition of the weak solution of Eq. (1).

Definition 2.1. We say that $u \in W$ is a weak solution to (1) if for any $v \in W$ we have

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u \cdot \nabla v + m(x) |u|^{p-2} uv) dx = \lambda \int_{\Omega} a(x) |u|^{\alpha-2} uv dx + \int_{\Omega} b(x) |u|^{\beta-2} uv dx$$

It is clear that Problem (1) has a variational structure. Let $J_{\lambda}:W\to R$ be the corresponding energy functional of problem (1) is defined by

$$J_{\lambda}(u) = \frac{1}{p}M(u) - \frac{1}{\alpha}A(u) - \frac{1}{\beta}B(u)$$

where

$$M(u) = \int_{\Omega} (|\nabla u|^p + m(x) |u|^p) dx$$
, $A(u) = \lambda \int_{\Omega} a(x) |u|^{\alpha} dx$

and

$$B(u) = \int_{\Omega} b(x) |u|^{\beta} dx$$

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J_{λ} . Let I be the energy functional associated with an elliptic problem on a Banach space X. If I is bounded below and I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding elliptic problem. However, the energy functional J_{λ} , is not bounded below on the whole space W, but is bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1).

Consider the Nehari minimization problem for $\lambda \in R \setminus \{0\}$,

$$\gamma_{\lambda} = \inf \{ J_{\lambda}(u) : u \in N_{\lambda} \},$$

where $N_{\lambda} = \{u \in W \setminus \{0\} : \langle J'_{\lambda}(u), (u) \rangle = 0\}$. It is easy to see that $u \in N_{\lambda}$ if and only if

$$M(u) - A(u) = B(u). (2)$$

Note that N_{λ} contains every nonzero solution of problem (1). Define

$$g_{\lambda}(u) = \langle J'_{\lambda}(u), u \rangle$$
.

Then for $u \in N_1$,

$$\langle g'_{\lambda}(u), u \rangle = pM(u) - \alpha A(u) - \beta B(u)$$
 (3)

$$= (p - \alpha)A(u) - (\beta - p)B(u) \tag{4}$$

$$= (p - \alpha)M(u) - (\beta - \alpha)B(u) \tag{5}$$

$$= (p - \beta)M(u) - (\alpha - \beta)A(u). \tag{6}$$

Now, we split N_{λ} into three parts:

$$\begin{aligned} N_{\lambda}^{+} &= \left\{ u \in N_{\lambda} : \left\langle g'_{\lambda}(u), u \right\rangle > 0 \right\} \\ N_{\lambda}^{0} &= \left\{ u \in N_{\lambda} : \left\langle g'_{\lambda}(u), u \right\rangle = 0 \right\} \\ N_{\lambda}^{-} &= \left\{ u \in N_{\lambda} : \left\langle g'_{\lambda}(u), u \right\rangle < 0 \right\} \end{aligned}$$

To state our main result, we now present some important properties of N_{λ}^{+} , N_{λ}^{0} and N_{λ}^{-} .

Lemma 2.2. There exists δ_0 such that for $0 < \delta_0 < \lambda \parallel a \parallel_{\infty}$, we have $N_{\lambda}^0 = \varphi$.

Proof. Suppose otherwise, then for $\delta_0 = \left[\frac{\alpha - p}{(\alpha - \beta)C_2^{\beta} \|b\|_{\infty}}\right]^{\frac{\alpha - \beta}{p - \beta}} \left[\frac{\beta - p}{(\alpha - \beta)C_1^{\alpha}}\right]$, where C_1 , C_2 are positive

constants and specified laters, there exists λ with $0 < \lambda \parallel a \parallel_{\infty} < \delta_0$ such that $N_{\lambda}^0 \neq \phi$. Then for $u \in N_{\lambda}^0$ we have

$$0 = \langle g_{\lambda}'(u), u \rangle = (p - \beta)M(u) + (\beta - \alpha)A(u)$$
(7)

$$= (p - \alpha)M(u) + (\alpha - \beta)B(u)$$
(8)

By the Sobolev imbedding theorem,

$$A(u) \le \lambda \parallel \alpha \parallel_{\infty} \parallel u \parallel_{\alpha}^{\alpha} \le \lambda C_{1}^{\alpha} \parallel a \parallel_{\infty} \parallel u \parallel_{W}^{\alpha}$$

$$\tag{9}$$

and

$$B(u) \le \|b\|_{\infty} \|u\|_{\beta}^{\beta} \le C_2^{\beta} \|b\|_{\infty} \|u\|_{W}^{\beta} \tag{10}$$

By using (9)–(10) in (7)–(8) we get

$$\|u\|_{w} \ge \left(\frac{p-\beta}{\alpha-\beta}\right)^{\frac{1}{\alpha-P}} \left(\frac{1}{C_{1}^{\alpha}\lambda \|\alpha\|_{\infty}}\right)^{\frac{1}{\alpha-P}}$$

and

$$\|u\|_{w} \le \left(\frac{\alpha - \beta}{\alpha - p}\right)^{\frac{1}{P - \beta}} \left(C_{2}^{\beta} \|b\|_{\infty}\right)^{\frac{1}{P - \beta}}$$

This implies $\lambda \parallel a \parallel_{\infty} \leq \delta_0$, which is a contradiction. Thus, we can conclude that there exists $\delta_{\circ} > 0$ such that for $0 < \delta_0 < \lambda \parallel a \parallel_{\infty}$, we have $N_{\lambda}^0 = \phi$.

By Lemma 2.2, for $0 < \delta_0 < \lambda \| a \|_{\infty}$ we write $N_{\lambda} = N_{\lambda}^+ \cup N_{\lambda}^-$ and define

$$\gamma_{\lambda}^{+} = \inf J_{\lambda \atop u \in N_{\lambda}^{+}}(u) ; \gamma_{\lambda}^{-} = \inf J_{\lambda \atop u \in N_{\lambda}^{-}}(u) ;$$

Lemma 2.3. We have

- (i) If $u \in N_{\lambda}^+$, then B(u) > 0;
- (ii) If $u \in N_{\lambda}^-$, then A(u) > 0.

Proof. (i) We consider the following two cases:

Case
$$(i-a)$$
: $A(u) = 0$. We have

$$B(u) = M(u) > 0$$
.

Case (i-b): $A(u) \neq 0$. Since $u \in N_{\lambda}^{+}$, by (5), we have

$$(p-\alpha)M(u)+(\alpha-\beta)B(u)>0$$

which implies

$$B(u) > \frac{\alpha - p}{\alpha - \beta} M(u) > 0$$

(ii) We consider the following two cases:

Case (ii-a): $B(u) \le 0$, we have

$$A(u) = M(u) - B(u) > 0$$

Case (ii-b): B(u) > 0. By (4), we have

$$(p-\alpha)A(u)+(P-\beta)B(u)<0,$$

which implies

$$A(u) > \frac{p - -\beta}{\alpha - p} B(u) > 0.$$

It follows that the conclusion is true.

Lemma 2.4. Suppose that u_0 is a local minimizer for J_{λ} on N_{λ} . Then, if $u_0 \notin N_{\lambda}$, u_0 is a critical point of J_{λ}

Proof. If u_0 is a local minimizer for J_{λ} on N_{λ} , then u_0 is a solution of the optimization

Problem minimize $J_{\lambda}(u)$ subject to $g_{\lambda}(u) = 0$.

Hence, by the theory of Lagrange multipliers, there exists $\Lambda \in R$ such that

$$J'_{\lambda}(u_{\circ}) = \Lambda g'_{\lambda}(u_{\circ}) \text{ in } W^{-1}(\Omega)$$

Here $W^{-1}(\Omega)$ is the dual space of the Sobolev space W. Thus,

$$\langle J'_{\lambda}(u), u \rangle_{W} = \Lambda \langle g'_{\lambda}(u), u \rangle_{W}.$$

But $\langle g'_{\lambda}(u), u \rangle_{W} \neq 0$, since $u \notin N^{0}_{\lambda}$. Hence $\Lambda = 0$. This completes the proof.

Then we have the following result.

Lemma 2.5. J_{λ} is coercive and bounded below on N_{λ} .

Proof. If $u \in N_{\lambda}$, it follows from (2) and the Sobolev embedding theorem

$$J_{\lambda}(u) = \left(\frac{\beta - p}{\beta p}\right) M(u) - \left(\frac{\beta - \alpha}{\beta \alpha}\right) A(u)$$

$$\geq \left(\frac{\beta - p}{\beta p}\right) M(u) - \left(\frac{\beta - \alpha}{\beta \alpha}\right) \lambda C_{1}^{\alpha} \|a\|_{\infty} \|u\|_{W}^{\alpha}$$

$$= \left(\frac{\beta - p}{\beta p}\right) M(u) - \left(\frac{\beta - \alpha}{\beta \alpha}\right) \lambda C_{1}^{\alpha} \|a\|_{\infty} (M(u))^{\frac{\alpha}{p}}$$
(11)

Thus $J_{\lambda}(u)$ is coercive and bounded below on N_{λ} . \square

Lemma 2.6. Let $\delta^* = \left(\frac{\beta}{p}\right)^{\frac{\alpha-p}{p-\beta}} \delta_0$. Then if $0 < \delta^* < \lambda \|a\|_{\infty}$, We have

(i) $\gamma^{+} > 0$

(ii) $\gamma^- \ge k_0$, for some $k_0 = k_0(\alpha, \beta, C_1, C_2)$.

Proof. (i) Let $u \in N_{\lambda}^+$. By (6)

$$M(u) > \frac{(\beta - \alpha)}{(p - \alpha)}B(u),$$

and so

$$\begin{split} &J_{\lambda}(u) = \left(\frac{1}{p} - \frac{1}{\alpha}\right) \! M(u) + \left(\frac{1}{\alpha} - \frac{1}{\beta}\right) \! B(u) \\ &\leq \left(\frac{\alpha - p}{p\alpha}\right) \! M(u) + \left(\frac{\beta - \alpha}{\alpha\beta}\right) \! \left[\frac{(p - \alpha)}{(\beta - \alpha)} M(u)\right] \\ &= \left[\frac{\alpha - p}{p\alpha} + \frac{p - \alpha}{\alpha\beta}\right] \! M(u) \\ &= \frac{(p - \alpha)(p - \beta)}{p\alpha\beta} M(u) > 0. \end{split}$$

Thus $\gamma_{\lambda}^{+} > 0$.

(ii) Let $u \in N_{\lambda}^{-}$, by (6) and (9) we have

$$M(u) < \frac{\beta - \alpha}{p - \alpha} B(u) \le \frac{\beta - \alpha}{p - \alpha} C_2^{\beta} (\|b\|_{\infty}) \|u\|_W^{\beta}$$

This implies

$$\|u\|_{w} > \left[\frac{p - \alpha}{(\beta - \alpha)C_{2}^{\alpha}(\|b\|_{\infty})}\right]^{\frac{1}{\beta - p}} \text{ for all } u \in N_{\lambda}^{-}.$$

$$\tag{12}$$

By Lemma 2.5, we have

$$\begin{split} &J_{\lambda}(u) \geq \parallel u \parallel_{w}^{\alpha} \left[\left(\frac{p - \beta}{\beta p} \right) \parallel u \parallel_{w}^{p - \alpha} - \left(\frac{\beta - \alpha}{\alpha \beta} \right) C_{1}^{\alpha} \left(\lambda \parallel a \parallel_{\infty} \right) \right] \\ &> \left(\frac{p - \alpha}{(\beta - \alpha) C_{2}^{\beta} (\parallel b \parallel_{\infty})} \right)^{\frac{\alpha}{\beta - p}} \left[\left(\frac{p - \beta}{\beta p} \right) \left(\frac{p - \alpha}{(\beta - \alpha) C_{2}^{\beta} \left(\parallel b \parallel_{\infty} \right)} \right)^{\frac{p - \alpha}{\beta - p}} - \left(\frac{\beta - \alpha}{\alpha \beta} \right) C_{1}^{\alpha} \left(\lambda \parallel a \parallel_{\infty} \right) \right] \end{split}$$

Thus, if $0 < \delta^* < \lambda \parallel a \parallel_{\scriptscriptstyle{\infty}}$, then $J_{\lambda} > k_0$, for all $u \in N_{\lambda}^-$, for some $k_0 = k_0(\alpha, \beta, C_1, C_2) > 0$. This completes the proof. \square

For each $u \in W$ with B(u) > 0, we write

$$t_{\text{max}} = \left(\frac{(p-\alpha)M(u)}{(\beta-\alpha)B(u)}\right)^{\frac{1}{(\beta-p)}} > 0.$$
 (13)

Then we have the following lemma.

Lemma 2.7. For each $u \in W$ with B(u) > 0 and $0 < \delta_0 < \lambda || a ||_{\infty}$, we have

(i) if $A(u) \le 0$, then there is a unique $0 < t^+ < t_{\text{max}}$ such that $t^+ u \in N_{\lambda}^+$ and

$$J_{\lambda}(t^{+}u) = \sup J_{\lambda}(tu)$$
$$0 \le t \le t_{\max}$$

(ii) if A(u) > 0, then there are unique $0 < t^+ = t^+(u) < t_{\max} < t^-$ such that $t^+u \in N_\lambda^+$, $t^-u \in N_\lambda^-$ and

$$J_{\lambda}(t^{+}u) = \sup_{0 \le t \le t_{\text{max}}} J_{\lambda}(tu), \quad J_{\lambda}(t^{-}u) = \inf_{t \ge 0} J_{\lambda}(tu)$$

Proof. Fix $u \in W$ with B(u) > 0. Let

$$E(t) = -t^{p-\alpha}M(u) + t^{\beta-\alpha}B(u) \text{ for } t > 0.$$
 (14)

Clearly, $E(t) \rightarrow -\infty$ as $t \rightarrow 0$. Since

$$E'(t) = -(p-\alpha)t^{p-\alpha-1}M(u) + (\beta-\alpha)t^{\beta-\alpha-1}B(u)$$

we have E'(t)=0 at $t=t_{\max}$, E'(t)>0 for $t\in[0,t_{\max})$ and E'(t)<0 for $t\in(t_{\max},\infty)$. Then E(t) achieves its maximum at t_{\max} , increasing for $t\in[0,t_{\max})$ and decreasing for $t\in(t_{\max},\infty)$. Moreover,

$$E(t_{\max}) = \left(\frac{(p-\alpha)M(u)}{(\beta-\alpha)B(u)}\right)^{\frac{p-\alpha}{\beta-\alpha}} M(u) - \left(\frac{(p-\alpha)M(u)}{(\beta-\alpha)A(u)}\right)^{\frac{\beta-\alpha}{\beta-p}} B(u)$$

$$= \|u\|_{w}^{\alpha} \left[\left(\frac{(p-\alpha)}{(\beta-\alpha)}\right)^{\frac{p-\alpha}{\beta-\alpha}} - \left(\frac{p-\alpha}{\beta-\alpha}\right)^{\frac{\beta-\alpha}{\beta-p}} \left(\frac{\|u\|_{w}^{\alpha}}{B(u)}\right)^{\frac{p-\alpha}{\beta-p}}\right]$$

$$\geq \|u\|_{w}^{\alpha} \left(\frac{1}{\|b\|_{\infty}}\right)^{\frac{p-\alpha}{\beta-p}} \left(\frac{\beta-p}{\beta-\alpha}\right) \left(\frac{(p-\alpha)}{(\beta-\alpha)C_{2}^{\alpha}}\right)^{\frac{p-\alpha}{\beta-p}}$$

$$(15)$$

(i) $A(u) \le 0$: There is a unique $0 < t^+ < t_{max}$ such that $E(t^+) = -\lambda A(u)$ and $E'(t^+) > 0$. Now,

$$-(p-\alpha)M(t^{+}u) + (\beta-\alpha)B(t^{+}u) = (t^{+})^{1+\alpha}$$

$$\left[-(p-\alpha)(t^{+})^{p-\alpha-1}M(u) + (\beta-\alpha)(t^{+})^{\beta-\alpha-1}B(u)\right],$$

$$= (t^{+})^{1+\beta}E'(t^{+}) > 0$$

and

$$< J_{\lambda}'(t^{+}u), t^{+}u > = (t^{+})^{p} M(u) - (t^{+})^{\alpha} A(u) - (t^{+})^{\beta} B(u)$$

$$= -(t^{+})^{\alpha} \Big[-(t^{+})^{p-\alpha} M(u) + (t^{+})^{\beta-\alpha} B(u) + A(u) \Big]$$

$$= -(t^{+})^{\alpha} \Big[E(t^{+}) + A(u) \Big] = 0$$

Thus, $t^+u \in N_2^+$.

Since for $t < t_{\text{max}}$, we have

$$-(p-\beta)M(tu) + (\alpha - \beta)B(tu) > 0$$

$$\frac{d^2}{dt^2}J_{\lambda}(tu) < 0$$

and

$$\frac{d}{dt}J_{\lambda}(tu) = t^{p-1}M(u) - t^{\alpha-1}A(u) - t^{\beta-1}B(u) = 0 \text{ for } t = t^{+}.$$

Thus, $J_{\lambda}(t^+u) = \sup_{0 \le t \le t_{\text{max}}} J_{\lambda}(tu)$.

(ii) A(u) > 0. By (15) and

$$\begin{split} E(-\infty) &= 0 < A(u) \\ &\leq C_1^{\alpha} \left(\lambda \parallel a \parallel_{\infty} \right) \parallel u \parallel_{w}^{\alpha} \\ &< \parallel u \parallel_{w}^{\alpha} \left(\frac{1}{\parallel b \parallel_{\infty}} \right)^{\frac{p-\alpha}{\beta-p}} \left(\frac{\beta-p}{\beta-\alpha} \right) \left(\frac{\left(p-\alpha\right)}{(\beta-\alpha)C_2^{\beta}} \right)^{\frac{p-\alpha}{\beta-p}} \\ &\leq E(t_{\text{max}}) \end{split}$$

 $\text{for } 0 < \delta_0 < \lambda \mid\mid a\mid\mid_{_{\infty}}, \text{ there are unique } t^+ \text{ and } t^- \text{ such that } 0 < t^+ < t_{\max} < t^-,$

$$E(t^+) = A(u) = E(t^-)$$

 $E'(t^+) > 0 > E'(t^-)$

We have $t^+u \in N_\lambda^+, t^-u \in N_\lambda^-$, and $J_\lambda(t^+u) \ge J_\lambda(tu) \ge J_\lambda(t^-u)$ for each $t \in [t^+, t^-]$ and $J_\lambda(t^+u) \ge J_\lambda(tu)$ for each $0 < t < t^+$. Thus,

$$J_{\lambda}(t^{+}u) = \sup_{0 \le t \le t_{\max}} J_{\lambda}(tu), \quad J_{\lambda}(t^{-}u) = \inf_{t \ge 0} J_{\lambda}(tu) \quad \cdot$$

This completes the proof. \Box

3. Existence of solutions

Now we can state our main result.

Theorem 3.1. If the parameter λ satisfy $0 < \delta_0 < \lambda \| a \|_{\infty}$, then problem (1) has at least two—solutions u_0^+ and u_0^- such that $u_0^{\pm} \ge 0$ in Ω and $u_0^{\pm} \ne 0$.

The proof of this Theorem will be a consequence of the next two propositions.

Proposition 3.2. If $0 < \delta_0 < \lambda \|a\|_{\infty}$, then the functional J_{λ} has a minimizer u_0^- in N_{λ}^+ and it satisfies

- (i) $J_{\lambda}(u_0^-) = \gamma_{\lambda}^-$
- (ii) u_0^- is a nontrivial nonnegative solution of problem (1), such that $u_0^- \ge 0$ in Ω and $u_0^- \ne 0$.

Proof. By Lemma 2.5, J_{λ} is coercive and bounded below on N_{λ} . Let $\{u_n\}$ be a minimizing sequence for J_{λ} on N_{λ}^- , i.e., $\lim_{n\to\infty}J_{\lambda}(u_n)=\inf_{u\in N_{\lambda}^-}J_{\lambda}(tu)$. Then by Lemma 2.5 and the Rellich-Kondrachov theorem, there exist a subsequence $\{u_n\}$ and $u_0^-\in W$ such that u_0^- is a solution of problem (1) and

$$u_n \to u_0^-$$
 weakly in W , $u_n \to u_0^-$ strongly in $L^{\alpha}(\Omega)$ and in $L^{\beta}(\Omega)$.

This implies

$$B(u_n) \to B(u_0^-)$$
 as $n \to +\infty$
 $A(u_n) \to A(u_0^-)$ as $n \to +\infty$

Let $B(u_0) > 0$. In particular $u_0^- \neq 0$. Now we prove that $u_n \to u_0^-$ strongly in W. Suppose otherwise, then

$$\|u_0^-\|_W < \liminf_{n \to \infty} \|u_n\|_W$$
 (16)

Fix $u \in W$ with B(u) > 0. Let

$$k_{u}(t) = E(t) + A(u),$$

where E(t) is as in (14). Clearly, $k_u(t) \to -\infty$ as $t \to 0^+$, and $k_u(t) \to A(u)$ as $t \to \infty$. (Since $k_u'(t) = E'(t)$, By similar argument as in the proof of Lemma 2.7, we have $k_u(t)$ achieves its maximum at \bar{t}_{\max} , $k_u(t)$ is increasing for $t \in (0, \bar{t}_{\max})$ and decreasing for $t \in (\bar{t}_{\max}, \infty)$, where $t \in (0, \bar{t}_{\max})$

$$\bar{t}_{\max} = \left(\frac{(p-\alpha)M(u)}{(\beta-\alpha)B(u)}\right)^{\frac{1}{(\beta-p)}} > 0,$$

is as in (13), since $k'_u(t) = E'(t)$. Since $B(u_0^-) > 0$, by Lemma 2.7, there is unique $t_0^- > t_{\text{max}}$ such that $t_0^- u_0^- \in N_\lambda^-$ and

$$J_{\lambda}(t_0^-u_0^-) = \inf_{t>0} J_{\lambda}(tu_0^-)$$

Then

$$K_{u_0^-}(t_0^-) = -(t_0^-)^{P-\alpha} M(u_0^-) + (t_0^-)^{\beta-\alpha} B(u_0^-) + A(u_0^-) = -(t_0^-)^{-\alpha} ((M(t_0^- u_0^-) - B(t_0^- u_0^-) - A(t_0^- u_0^-)) = 0$$
(17)

By (16) and (17) we obtain $k_{u_n}(t_0^-) > 0$ for n sufficiently large. Since $u_n \in N_\lambda^-$, we have $t_{\max}(u_n) < 1$. Moreover,

$$k_{u_n}(1) = -M(u_n) + B(u_n) + A(u_n) = 0,$$

and $k_{u_n}(t)$ is decreasing for $t \in (t_{\max}^-, t^-)$. This implies $k_{u_n}(t) < 0$ for all $t \in [1, \infty)$ and n sufficiently large.

We obtain $\bar{t}_{\max}(u_0) < t^- < 1$. But $t_0^- u_0^- \in N_\lambda^-$ and

$$J_{\lambda}(t_0^-u_0^-) = \inf_{t>0} J_{\lambda}(tu_0^-)$$

This implies

$$J_{\lambda}(t_0^- u_0^-) < J_{\lambda}(u_0^-) < \lim_{n \to \infty} J_{\lambda}(u_n) = \gamma_{\lambda}^-$$

which is a contradiction. Hence

$$u_n \to u_0^-$$
 strongly in W.

This implies

$$J_{\lambda}(u_n) \rightarrow J_{\lambda}(u_0^-) = \gamma_{\lambda}^-$$

Thus u_0^- is a minimizer for J_{λ} on N_{λ}^- . Since $J_{\lambda}(u_0^-) = J_{\lambda}(|u_0^-|)$ and $|u_0^-| \in N_{\lambda}^-$, by Lemma 2.4 we may assume that u_0^- is a nontrivial nonnegative solution of Eq. (1).

Next, we establish the existence of a local minimum for J_{λ} on N_{λ}^{-} .

Proposition 3.3. If $0 < \delta_0 < \lambda \parallel a \parallel_{\infty}$, then the functional J_{λ} has a minimizer u_0^+ and it satisfies

- (i) $J_{\lambda}(u_0^+) = \gamma_{\lambda}^+$
- (ii) u_0^+ is a nontrivial nonnegative solution of problem (1), such that $u_0^+ \ge 0$ in Ω and $u_0^+ \ne 0$.

Proof. Let $\{u_n\}$ be a minimizing sequence for J_{λ} on N_{λ}^+ , i.e. $\lim_{n\to\infty}J_{\lambda}(u_n)=\inf_{u\in N_{\lambda}^+}J_{\lambda}(u)$. Then by Lemma

2.5 and the Rellich-Kondrachov theorem, there exist a subsequence $\{u_n\}$ and $u_0^+ \in W$ such that u_0^+ is a solution of problem (1) and

$$u_n \to u_0^+$$
 weakly in W ,

$$u_n \to u_0^+$$
 strongly in $L^{\alpha}(\Omega)$ and in $L^{\beta}(\Omega)$.

This implies

$$A(u_n) \to A(u_0^+)$$
 as $n \to +\infty$

$$B(u_n) \to B(u_0^+)$$
 as $n \to +\infty$.

Moreover, by (6) we obtain

$$B(u_n) > \frac{(p-\alpha)}{(\beta-\alpha)} M(u_n); \tag{18}$$

By (12) and (18) there exists a positive number η_0 such that

$$B(u_n) > \eta_0$$
.

This implies

$$B(u_0^+) \ge \eta_0 \ . \tag{19}$$

Now we prove that $u_n \to u_0^+$ strongly in W. Suppose otherwise, then

$$\|u_0^+\|_W < \liminf_{n\to\infty} \|u_n\|_W$$
.

By Lemma 2.7, there is unique $t \ge 0$ such that $t_0^+ u_0^+ \in N_\lambda^+$. Since $\{u_n\} \in N_\lambda^+$, $J_\lambda(u_n) \ge J_\lambda(tu_n)$ for all $t \ge 0$, we have

$$J_{\lambda}(t_0^+ u_0^+) < \lim_{n \to \infty} J_{\lambda}(t_0^+ u_n) \le \lim_{n \to \infty} J_{\lambda}(u_n) = \gamma_{\lambda}^+$$

and this is a contradiction. Hence $u_n \to u_0^+$ strongly in W . This implies

$$J_{\lambda}(u_n) \rightarrow J_{\lambda}(u_0^-) = \gamma_{\lambda}^+ \quad as \quad n \rightarrow \infty$$

Since $J_{\lambda}(u_0^+) = J_{\lambda}(\left|u_0^+\right|)$ and $\left|u_0^+\right| \in N_{\lambda}^+$, by Lemma 2.4 and (19) we may assume that u_0^+ is a nontrivial

nonnegative solution of Eq. (1).

Proof of Theorem 3.1. By Propositions 3.2 and 3.3, we obtain Eq. (1) has two nontrivial nonnegative solutions u_0^+ and u_0^- such that $u_0^+ \in N_\lambda^+$ and $u_0^- \in N_\lambda^-$. It remains to show that the solutions found in Propositions 3.2 and 3.3 are distinct. Since $N_\lambda^+ \cap N_\lambda^- = \phi$, this implies that u_0^+ and u_0^- are distinct. This concludes the proof.

4. References

- [1] Afrouzi, G.A. On a nonlinear eigenvalue Problem in ODE. J. Math. Anal. Appl. 2005, 303: 342–349.
- [2] Afrouzi, G.A., Rasouli, S.H. A remark on the uniqueness of positive solutions for Dirichlet problems. *Nonl. Anal.* 2006, **64**(12): 2773–2777.
- [3] Ambrosetti, A., Brezis, H., Cerami, G.. Combined effects of concave and convex nonlinearities in some elliptic problems. *J. Funct. Anal.* 1994, **122**: 519–543.
- [4] Amman, H., Lopez-Gomez, J. A priori bounds and multiple solution for superlinear indefinite elliptic problems. *J. Differ. Equ.* 1998, **146**: 336–374.
- [5] Atkinson, C., El Kalli, K. Some boundary value problems for the Bingham model. *J. Non-Newtonian Fluid Mech.* 1992, **41**: 339–363.
- [6] Binding, P.A., Drabek, P., Huang, Y.X.On Neuman boundary value problems for some quasilinear equations. *Electron. J. Differ. Equ.* 1997, **5**: 1–11.
- [7] Brown, K.J., Wu, T.F. A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function. *J. Math. Anal. Appl.* 2008, **337**: 1326–1336.
- [8] Escobar, J.F. Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate. Comm. *Pure Appl. Math.* 1990, **43**: 857–883.
- [9] Hai, D.D., Schmitt, K., Shivaji, R. Positive solutions of quasilinear boundary value problems. *J. Math. Anal. Appl.* 1998, **217**(2): 672–686.
- [10] Perera, K., Shivaji, R. Positive solutions of multiparameter semipositone p-Laplacian problems. *J. Math. Anal. Appl.* 2008, **338**(2): 1397–1400.
- [11] Tehrani, H.T. A multiplicity result for the jumping nonlinearity problem. J. Differ. Equ. 2003, 118(1): 272–305.
- [12] Tehrani, H.T. On indefinite superlinear elliptic equations. Cal. Var. 1996, 4: 139–153.
- [13] Tolksdorf, P. Regularity for a more general class of quasilinear elliptic equations. *J. Differ. Equ.* 1984, **51**: 126–150.
- [14] Wu, T.F. On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function. *J. Math. Anal. Appl.* 2006, **318**: 253–270.
- [15] Afrouzi G.A., Rasouli S.H. A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian. *Nonl.Differ .Equ. Appl*, 2009.