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Abstract. This paper discusses chaos synchronization between two identical or different fractional order 
chaotic systems. Base on linear matrix inequality, two new synchronization criterions are constructed by 
which it is proved that two identical (Lü system) or different (Lü and Chen systems) fractional order chaotic 
systems are synchronized using the simple linear feedback control laws. Finally, simulations results show the 
method is effective. 
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1. Introduction  
Since Pecora and Carroll established a chaos synchronization scheme for two identical chaotic systems 

with different initial conditions[1], variety of method and techniques have been proposed for the control and 
synchronization of chaotic systems such as linear and nonlinear feedback synchronization[2-6], impulsive 
synchronization [7-8], adaptive synchronization [9-12], observer based control method[13-15], and etc.      

Fractional calculus deals with derivatives and integration of arbitrary order [16–18] and has deep and 
natural connections with many fields of applied mathematics, engineering and physics. Fractional calculus 
has wide range of applications in control theory [19], Furthermore, recently, study of chaos synchronization 
in fractional order dynamical systems and related phenomena is receiving growing attention , some 
synchronization-based strategies have been devised to synchronize fractional chaotic systems [20-25]. In Ref. 
[26], the synchronization of fractional-order chaotic systems has been presented. In Refs. [27-28], nonlinear 
control are employed to synchronize two fractional-order chaotic systems. In Ref. [29], Synchronization of 
N-coupled fractional-order chaotic systems with ring connection has been reported. In Refs. [30-32], 
Synchronization of different fractional order chaotic systems using active control has been discussed. In Ref. 
[33], the stability of the fractional order unified chaotic system has been studied. In this paper, base on linear 
matrix inequality, two new synchronization criterions are constructed by which it is proved that two identical 
(Lü system) or different (Lü and Chen systems) fractional order chaotic systems are synchronized. 

This work is presented as follows: Section 2 describes mathematical preliminaries and model. Chaos 
synchronization between two identical fractional order Lü systems in Section 3. Section 4 handles chaos 
synchronization between Lü and Chen systems of fractional order. Section 5 gives the conclusion of the 
paper.   

2. Mathematical preliminaries and model 
In this section, we give some useful mathematical preliminaries. 
The mathematical definition of fractional derivatives and integrals has been the subject of several 

different approaches. The definition of fractional integrals by Grunwald–Letnikov and Riemann–Liouviller 
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is as follows [34]: 
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The fractional order Lü system and Chen system [35-36] are described by (see Fig.1-2) 
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3. Chaos synchronization between two identical fractional order Lü  systems  
In this section we study the synchronization between two identical fractional order Lü systems, we 

define the drive (master) and response (slave) systems as follows: 
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and 
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We define control functions iu  as  

                                                        111 eku −= , 222 eku −= , 333 eku −= ,                                                     (7) 
where 01 >k , 02 >k , 03 >k . 

The error functions as   
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                                                       111 xye −= , 222 xye −= , 333 xye −= .                                                   (8) 
Eq. (8) together with (5) and (6) yields the error system 
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Theorem 1. The fractional order systems (5) and (6) can realize synchronization using the following linear 
matrix inequality: 
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where 2X , 3X  and 1Y  are the upper bounds of the absolute values of the states 2x , 3x  and 1y , 
0,, >cba , Δ  denotes the symmetric terms. 

Proof:   Let 
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Supposing that λ  is one of eigenvalues of matrix A, and there should be a nonzero vector 
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Formulation 22)arg( αππλ >>  is obvious. According to the stability theory of fractional-order 
system [37], the system (9) is stable, therefore, the fractional order systems (5) and (6) can realize 
synchronization.  

3.1. Simulation and results  
In this section, computer simulations are used to verify and demonstrate the effectiveness of the above 

method. In all simulation, 99.0,98.0,97.0 321 === ααα . The initial conditions of the master and slave 

systems are (-1 2 15) and (2 6 5), respectively. By estimating simulations, we let ,302 =X 503 =X  

281 =Y .  

     The conditions 0,, >cba  can be expressed as  
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So, inequality (10) and (12) are linear matrix inequality in cba ,, , 1ak , 2bk , 3ck . By solving the LMI (10) 
and (12), the following solutions are obtained: 

,0564.2,3880.1,7649.2 === cba 1031.111,4376.195,7577.48 321 === ckbkak . 
This yields .0280.54,8052.140,6345.17 321 === kkk Therefore, the controller (7) will drive the slave 

system (6) to synchronize the master system (5) as desired, the synchronous errors are shown in Figs. 3.   

 

Fig.1. Chaotic attractor of the fractional-order Lü system (3)                         

                                              

Fig.2. Chaotic attractor of the fractional-order Chen system (4)  
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Fig.3. Synchronization errors between two identical fractional order Lü systems  

4. Chaos synchronization between Lü and Chen systems of fractional order 
In this section we study the synchronization between Lü and Chen systems of fractional order. Assuming 

that the Lü system drives the Chen system, we define the drive (master) and response (slave) systems as 
follows: 
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and 
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Eq. (8) together with (13) and (14) yields the error system 
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We define control functions 1u , 2u  as  

                  121 xxu −= , 332211212 87 ekekekyyu −−−−= ,                                      (16) 
where 01 >k , 02 >k , 03 >k . 

Theorem 2. The fractional order systems (13) and (14) can realize synchronization using the following 
linear matrix inequality: 
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where 2X , 3X  and 1Y  are the upper bounds of the absolute values of the states 2x , 3x  and 1y , 
0,, >cba , Δ  denotes the symmetric terms. 

Proof:  Similar to proof of Theorem 1, let                
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The undone reasoning process is similar to proof of Theorem 1, thus we leave out the  following proofs 
here. 

4.1. Simulation and results  
In this section, computer simulations are used to verify and demonstrate the effectiveness of the above 

method. The initial conditions of the master and slave systems are (-1 2 15) and (2 6 5), respectively. By 
estimating simulations, we also let ,302 =X 503 =X  281 =Y . So, inequality (12) and (17) are linear 

matrix inequality in cba ,, , 1ak , 2bk , 3ck . By solving the LMI (12) and (17), the following solutions are 
obtained: 

,0087.0,0035.1,0295.0 === cba  0975.15,7544.23,7786.7 321 === ckbkak . 

This yields 3225.55,3579.143,7858.26 321 === kkk . Therefore, the controller (16) will drive the 
slave system (14) to synchronize the master system (13) as desired, the synchronous errors are shown in Figs. 
4.   
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Fig.4. Synchronization errors between fractional order Lü and Chen systems 

5. Conclusion  
This paper discusses chaos synchronization between two identical or different fractional order chaotic 

systems. The simple state feedback controllers for fractional-order chaos synchronisation are obtained base 
on linear matrix inequality, simulation results are presented to demonstrate the application of theoretical 
results. 
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