

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 6, No. 4, 2011, pp. 287-294

Speeding Up Fractal Image Compression Using DCT
Descriptors

 Dr. Loay E. George1 and Nevart A. Minas2
1University of Baghdad/ College of Science

2Technical Institute of Kirkuk/ Computer Systems Department

(Received January 25, 2011, accepted May 22, 2011)

Abstract. The main problem in the Fractal image compression (FIC) method is the long encoding time. In
order to speed up the encoding stage, an improved PIFS scheme is introduced in this paper; In the introduced
PIFS scheme the input color image is, converted from RGB color space to YUV color space, and then the
chromatic bands are down sampled by 2. The zero-mean range and domain blocks are classified using a
block descriptor which is determined using a pair of low frequency DCT coefficients due to the energy
packing properties of DCT. The DCT descriptors are also used to address the isometric state of each range
and domain blocks. The coefficients of the optimal affine approximation are quantized, and then coded using
differential pulse code modulation (DPCM) and shift coding. The conducted tests results on Lena's standard
image indicated that the encoding time is reduced to (1 sec) while keeping the image quality above the
acceptable level and no significant reduction in the compression ratio was occurred.

1. Introduction
The basic idea of fractal image compression technique was introduced by Barnsley [1] in 1980 according

to the contractive mapping fixed-point theorem. In his proposed iterated function system (IFS), the contacted
transform consisting of a sequence of affine transformations is applied to the entire image. Later Jacquin [2]
proposed a partitioned IFS (PIFS) associated with a block-based automatic encoding algorithm where those
affine transformations are applied to partitioned blocks. This scheme search process is extremely time-
consuming. The main reason is that the similarity matching computation between range and domain blocks is
complex. In response to this problem, an effective method is that the image blocks are classified before
matching, so as to speed up the encoding process.

The major methods are used the grey statistical classification characteristics, such as variance or mean of
image blocks in Jacquin[2] and Fisher[3]. Some methods used the image blocks’ low frequency DCT
coefficients [4]. Other methods classified the image blocks from different aspects, such as with inner
product[5], with moment features[6].

This paper is organized as follows. In Section 2 the basic fractal image encoding method is described.
Section 3 introduces, the proposed classification algorithm, in Section 4, the tests of the proposed method are
presented and compared to that of other fast classification schemes. In the last section conclusions of the
comparison are drawn.

2. Traditional PIFS Encoder

The basis steps of the encoding procedure could be summarized as: "the image, to be compressed, is
partitioned into blocks; each block can be approximated by other image block after some scaling operations.
The result block approximation is represented by sets of transform coefficients.

The traditional PIFS encoder loads the 24-bit bitmap color image, and decomposes the image data into
three 2D-arrays (i.e., Red, Green and Blue). The color bands are converted from RGB color space to YUV
space. The two chromatic bands (U and V) are down sampled by 2 to increase the compression gain. These
two down sampled components with the Y component are passed, as three separate gray images, to PIFS
encoder.

The implemented PIFS-mapping stage implies the following processes:

Dr. Loay E. George, et al: Speeding Up Fractal Image Compression Using DCT Descriptors

JIC email for contribution: editor@jic.org.uk

288

(a) Range Pool Generation: Each input color band (WxH) is partitioned into a non-overlapping blocks
of size m, using fixed size blocks scheme with block size (m=LxL). The number of range blocks Nr is
determined as follows:

[][]LHLWNr //= (1)

(b) Domain Pool Generation: The domain array is generated by down sampling the input color-band

(by 2) using averaging method. The domain array dimensions are calculated as follows:

2\HHh = , 2\WWh = (2)

The domain array is partitioned into overlapping fixed size blocks; using certain jump step size (Δ) for
horizontal and vertical shifts. The number of domain blocks in each row and column of the domain pool (i.e.,
Nxd and Nyd) and total number of domain blocks (Nd) are determined using the following equations:

1+⎥⎦
⎥

⎢⎣
⎢

Δ
−

=
LW

N h
xd

, 1+⎥⎦
⎥

⎢⎣
⎢

Δ
−

=
LH

N h
yd (3)

ydxdd NNN = (4)

(c) PIFS mapping: In order to avoid the computational redundancy, some of involved coding

parameters have been predetermined before entering the nested loops, among these parameters are:

 (1) The quantization steps of both offset and scale parameters using the following equations:

1−
=

rbr 2
255Q ,

12 1
max

−
=

−sb

s
sQ (5)

 Where,
 br is number of bits used to represent offset coefficient
 bs is number of bits used to represent sacle coefficient
 Smax is the highest permissible value of scale coefficients(255).

(2) The average (d) and variance (mσ2
d) of each domain block (di):

∑
−

=

=
1

0

1 m

i
id

m
d (6)

21

0

22 dmdm
m

i
id −=σ ∑

−

=

 (7)

Where, m is the block size

(3) The reference coordinates of each domain block (xd and yd).

In the PIFS encoder, the search process implies that all the domain blocks (di) listed in the domain pool
(di,…,dn) should be matched with the considered range block (ri), to list out the optimal affine approximation
(ir′). The PIFS mappings are done between the range and domain blocks which have zero means. This kind
of mapping is described by in the following equation:

iii rddsr +−=)(' (8)

where,
 di is the corresponding pixel value in the domain block.
 s is the scaling coefficient.

Journal of Information and Computing Science, Vol. 6 (2011) No. 4, pp 287-294

JIC email for subscription: publishing@WAU.org.uk

289

 r is the mean (or offset) range block.
 d is the mean of domain block.

The best affine approximation (ri') is determined using the following least error criteria:

0
2

=
∂
χ∂
s

 (9)

where,
 χ2 is the total error between the range block (r) and its approximation (r')
 s is the optimal scale value

Each domain block is transformed using a set of isometric transforms (i.e., rotation and flipping); the

isometric mappings in the encoding process need more computational time to perform the extra matching
processes.

The IFS set {consist of the scale(s), offset (r), symmetry index (sym) of the domain block, besides to its
coordinates (xd,yd)} is considered as the IFS code set that represents the range block (r) in terms of the
domain block (d).

The following steps are used to determine the IFS code set:

(1) The offset (r) of the range block:

 ∑
−

=

=
1

0

1 m

i
irm

r (10)

(2) Apply the uniform quantization to the average (offset):

)(
r

r Q
rroundI = (11)

rr IQr =~ (12)

(3) Determine the scale coefficients and then bound it within the range [-Smax, Smax].

∑

∑
−

−
= 22 dmd

rdmdr
s

i

i
i

i

 (13)

⎪
⎩

⎪
⎨

⎧

>
≤≤

−<−
=

 s sif s
sss- if s
 s sif s

s

max

max

max

max

max

max

 (14)

The bounded scale is then quantized:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
s Q

sroundI , sIsQs~ = (15)

(4) The total error (i.e. Chi square (χ2)) between the actual values of the range block elements and the
corresponding approximate values produced by IFS mappings:

Dr. Loay E. George, et al: Speeding Up Fractal Image Compression Using DCT Descriptors

JIC email for contribution: editor@jic.org.uk

290

[]∑
−

=

−−−=
1m

0i

2
ii

2)dd(s~)r~r(χ (16)

(5) The registered χ2 is compared with the permissible level of error (i.e. threshold value ε) to register the
optimal set (dd yxsymrs ,,,,)opt.

(d) The optimal affine approximation set are then coded using differential pulse code modulation
(DPCM) and shift coding.

At decoding stage, the approximations could be performed several times, starting with any random
image, till reaching the fixed point (i.e., attractor state) image".

3. Usage of DCT Block Indexing in Modified PIFS Encoder
In the enhanced PIFS coding stage, the range and domain pools are generated first, and then the input

band is resized before partitioning it into fixed blocks of length (L) to be set as multiples of the block length.
This is done by inserting some additional lines and/or columns, with equal spaces between each other, to the
images in order to make the width and height of the band as multiple of block length, and they must be
removed at the end of the PIFS decoding.

The energy compaction property of the DCT block transform is utilized in this introduced PIFS scheme.
Most of the energy of image blocks is hold by the low frequency coefficients due to DCT energy packing
property. So, the energy decreases when moving to high frequency part of the DCT domain, taking into
consideration that this part of coefficients holds the fine shape information. The even DCT coefficients (such
as, C(2,0), C(0,2), …) are invariant to block reflection (i.e., when reflecting the block horizontally or
vertically the values of these coefficients will be the same as without reflection). For this reason, its use in
this work was ignored, so only the coefficients {C(i,0) or C(0,i)} with i= {1,3} were used to determine the
DCT based descriptors.

The low DCT coefficients {i.e., C(i,0) and C(0,i); where i=1 or 3} of each domain block (and later, for
each range block) of size (L×L) are calculated using the following equations:

∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +
π

=
1

0

1

0

)12(
2

cos),()0,(
L

y

L

x

x
L

iyxciC (17)

∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +
π

=
1

0

1

0

)12(
2

cos),(),0(
L

y

L

x

y
L

iyxciC (18)

Where,
i∈{1,3} and c(x,y) is the domain or range element.

Table .1: The truth table for the eight blocks classes

Boolean Criteria
Block's Class Index

),0()0,(iCiC ≥ 0)0,(≥iC 0),0(≥iC
0 T T T
1 T T F
2 T F T
3 T F F
4 F T T
5 F T F
6 F F T
7 F F F

The two DCT coefficients i.e., {C(i,0) and C(0,i)} for each domain and range block are used to predict

Journal of Information and Computing Science, Vol. 6 (2011) No. 4, pp 287-294

JIC email for subscription: publishing@WAU.org.uk

291

the isometry index of the block using the Boolean criterion shown in table (1).
The required symmetry process on the domain block is determined by comparing the symmetry indexes

of the range and matched domain block using the lookup table (2) instead of trying the 8 isometric operations
to find the best possible match with the range block.

Beside the isometry index, another block descriptor is introduced to classify the domain and range blocks;
it is also based on the two DCT descriptors C(i,0) and C(0,i). This descriptor is called DCT-based block
descriptor (R). Instead of testing all domain blocks to find the best approximate for each range block, only
the domain blocks have similar DCT-based block descriptor (R) to that of the range block, are tested to find
the optimal IFS code. So, the descriptor (R) is used as

a classifier to classify the domain and range blocks. R Factors should be affine invariant, such that "If
two blocks (range and domain) satisfy the contractive affine transform then their factors (Rd and Rr) should
have similar values; this doesn’t means that any two blocks have similar R factors are necessarily similar to
each other" [6].

Table 2. The required symmetry operation to convert the block's isometry status

 New Block State Index(domain)
 0 1 2 3 4 5 6 7

0 0 6 4 2 5 1 3 7
1 6 0 2 4 1 5 7 3
2 4 2 0 6 3 7 5 1
3 2 4 6 0 7 3 1 5
4 5 1 3 7 0 6 4 2
5 1 5 7 3 6 0 2 4
6 3 7 5 1 4 2 0 6

Old
Block
State
Index

(range)

7 7 3 1 5 2 4 6 0
 0≡ No Operation; 1≡ Rotation_90; 2≡ Rotation_180; 3≡
 Rotation_270; 4≡ Reflection; 5≡ Reflection+ Rotation_90;
 6≡ Reflection+Rotation_180; 7≡ Reflection+Rotation_270;

In this paper, two types of R-descriptors have been tested (i.e., the ratio descriptor, and the relative

difference). For each type, the two sets of DCT coefficients, {i.e., C(i,0) and C(0,i)} were taken into
consideration. So, for each type of R-descriptors two possible descriptors were determined. For the first type
(i.e., ratio descriptor) one of the following two descriptors were used:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≥

=

1001
01

10

0110
10

01

1
CCif

C
C

NoBin

CCif
C
C

NoBin
FR (19)

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≥

=

3003
03

30

0330
30

03

*
3

CCif
C
C

NoBin

CCif
C
C

NoBin
FR (20)

While, for the second type (i.e., relative difference) one of the following two descriptors were used:

2
10

2
01

2
10

2
01*1

CC
CCNoBinSR

+
−

= (21)

2
30

2
03

2
30

2
03*3

CC
CCNoBinSR

+
−

= (22)

Dr. Loay E. George, et al: Speeding Up Fractal Image Compression Using DCT Descriptors

JIC email for contribution: editor@jic.org.uk

292

The domain blocks are sorted in an ascending order according to their R-descriptor values to speed up
the matching task between range and domain blocks. The possible value of all R-descriptor values is
specified from the range [0, NBins]. If the best match between domain and range blocks in the exact class to
find error less than the predefined threshold ε1 is failed, then the matching should be restarted with domain
blocks belonging to neighbor classes whose R factors lay within the range of values [WinSizI r m]. The
matching error between these domain blocks and the range block is checked using other predefined error (ε2)
as its value is higher than the first predefined error (ε1).

4. Test Results
The proposed methods have been tested by using color Lena image (256x256 pixels, 24 bits); the

encoding parameters were set as follows:
1. The block length was 5 with jump step 1.
2. The maximum permissible scale (Smax) was 3.
3. The number of bins (NBins) of the DCT descriptor was 100 and search window size (WinSiz) was 1.
4. Permissible error threshold value (ε1) was 1.
5. Permissible error threshold value (ε2) was 1.2.
6. The number of quantization bits of the offset coefficients (rNoBit) was 8, and of the scale coefficients

(sNoBit) was 6.
The proposed system was established using Visual Basic 6.0 and implemented on a Dell PC, equipped

with Pentium Dual CPU and 1.60GHz processor. The encoding time was 1.02 second, PSNR was 31.66dB,
and the obtained compression ratio was 13.533.

In the figures listed in this section, the following notations are used:

1. Trad: Denotes the traditional PIFS encoder.
2. Sym: Denotes the PIFS encoder that based on the symmetry descriptor only.
3. FR1, FR2, SR1, and SR2: Denotes the enhanced PIFS encoders that based on symmetry descriptor with

the block descriptor defined by equations (19-22) respectively.

0

20

40

60

80

100

120

Trad sym FR1 SR1 FR3 SR3

Ti
m

e

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3

 FR1 SR1 FR3 SR3

Ti
m

e

 Fig. 1: The encoding time of the six PIFS schemes Fig. 2: The encoding time of the enhanced PIFS schemes

31
31.5

32
32.5

33
33.5

34
34.5

35

Tr
ad

sy
m

 F
R1

SR
1

FR
3

SR
3

PS
N

R

13.45
13.49
13.53
13.57
13.61
13.65
13.69
13.73
13.77
13.81
13.85

Tr
ad sy

m
 FR1

SR1
FR

3
SR3

C
R

Fig .3: The attained PSNR of the six PIFS schemes Fig. 4: The attained CR of the six PIFS schemes

The test results shown in figures (1) and (2) shows that the traditional system is the slower PIFS

encoding scheme is decreased by 8 with little degradation in PSNR with the scheme that based on the

Journal of Information and Computing Science, Vol. 6 (2011) No. 4, pp 287-294

JIC email for subscription: publishing@WAU.org.uk

293

symmetry descriptor only. The enhanced PIFS schemes are relatively fast. The schemes FR1 or FR3 take
less compression time than the SR1 or SR3schemes. Also, the descriptors based on C(1,0) and C(0,1)
coefficients (i.e. FR1 and SR1) lead to compressed images with a quality higher than that obtained using
C(3,0) and C(0,3) coefficients (i.e. FR3 and SR3).

0.2

0.6

1

1.4

1.8

2.2

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

NBins

Ti
m

e

29
29.5

30
30.5

31
31.5

32
32.5

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

NBins

PS
N

R

Fig. 5: The effect of NBins on the encoding Time Fig. 6: The effect of NBins on the encoding Time

Table. 3: The comparison results of our proposed PIFS scheme and of some previous compression Systems (all
applied on Lena image 256x256)

Research Image type Time
(Sec)

PSNR
(dB) CR

[2] Grey Scale 142 29.95 13.25

[7] Color(8bit) 60 32 15
[6] Grey scale 7 29 4.57
[9] Grey scale 11 30.89 13.87

[8] Color (24bit) 65 29.05 7.48
[4] Grey scale 19.09 27.71 9.23
our Color(24bit) 1.02 31.66 13.533

The test results in the figures (5) and (6) led us to consider NBins =100 as the best selection, because it
leads to good compromised compression results. Table (3) summarizes between the attained results by the
proposed compression system and those presented in other PIFS systems.

5. Conclusions
The analysis of the conducted tests has stimulated that the energy packing attribute of DCT coefficients

is very useful in classifying the domain and range blocks and isometric process prediction, by using only the
low frequency DCT coefficients. Using the color model YUV leads to good compression ratio when it is
compared with the case of using RGB. Further work is needed to enhance the DCT filter method by using
hierarchal partition schemes (Quadtree or Horizontal-Vertical partition) to attain higher compression ratios.
Non uniform quantized classification descriptor can be used to address the domain and range blocks.

6. References
[1] M. F. Barnsley. Fractals Everywhere. Academic Press, 1993.
[2] A. E. Jacquin. Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformation. IEEE,

Image Processing. 1992, 1(1): 18-30.
[3] Y. Fisher. Fractal Image Compression. SIGGRAPH Course Notes. 1992.
[4] Duh D.J., Jeng J.H., and Chen S.Y.Speed Quality Qontrol for Fractal Image Compression. Imaging Science

Journal. 2008, 56(2): 79-90(12).
[5] MA Yan & LI Shun-bao. Fast fractal image compression algorithm based on inner product. Computer Engineering.

2003, 29(2): 25-27.
[6] George L. E. Fast IFS Coding for Zero-Mean Image Blocks Using Moments Indexing Method. Journal of science.

Dr. Loay E. George, et al: Speeding Up Fractal Image Compression Using DCT Descriptors

JIC email for contribution: editor@jic.org.uk

294

2006, 6(1): 8-14.
[7] Grebenik V. V. Fast Hybrid Fractal Image Compression Algorithm for Color Images. IEEE. 1998, 1: 804-806.
[8] Thakur N. V. Color Image Compression with Modified Fractal Coding on Spiral Architecture. Journal of

Multimedia. 2007, 2(4): 55-66.
[9] Jin-shu H. Fast Fractal Image Compression by Pixel Peaks and Valleys classification. Journal of Communication

and Computers. 2007, 4(3).

