

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 7, No. 1, 2012, pp. 003-010

A Visualization Tool for Teaching and Learning Database
Decomposition System

Akinwale Adio Taofiki+ and Arogundade Oluwasefunmi Tale

Department of Computer Science, University of Agriculture, Abeokuta, Nigeria

(Received September 25, 2011, accepted December 2, 2011)

Abstract. Database designers and students of computer science in tertiary institutions find it difficult to
learn database theory in which database decomposition is a major aspect. This work presents a visualization
tool to simplify the study of decomposition algorithms behaviours which would assist the students and
database designers to decompose any relational schema with its functional dependencies in case it violates
third normal form or Boyce Codd Normal Form. Students perceptions are captured via translating
decomposition algorithms into visualization tool for entering relational attributes with their functional
dependencies. Students are requested to move an arrow from one normal form to another and the system
specifies a green light as an indication of normalized form or red light as an indication of violation of normal
form for learning purposes. Students use the tool to understand the abstract knowledge of decomposition
techniques and easily use it to decompose any relation if it violates either third normal form or Boyce Codd
normal form. The effectiveness of the tool has been evaluated in surveys and the students generally viewed it
more positively than conventional classroom teaching.

Keywords: functional dependencies, database keys, normal forms, dependencies preserving, algorithms,
relational schemas

1. Introduction
The main purpose of schema normalization is avoidance of redundancies that can be problematic.

Reducing the number of functional dependencies within one table is main idea to avoid redundancy, but we
may loose efficiency and transparency. Normal forms guarantee that functional dependencies only involve
key attributes. Transformation of a relation into normal forms as a result of anomalies results into
decomposition of a relation schema. This is done by replacing relation R by two or more relation schemas
R’s that each contains a subset of the attributes of R and together include all attributes of R. The benefits of
the decomposition into normal forms reduce redundancy and storage wastage as well as solving insert,
update and delete anomalies. It appears often to be a better database design if the number of relations is not
too big and makes it easier to maintain the information in the database in a consistent state A relation is in
good form if the relation Ri preferably should be in either 3NF or BCNF. In the case that a relation R is not
in good form, decompose it into a set of relations (R1, R2, R3,…, Rn) such that the decomposition is a
lossless join decomposition and each relation is dependency preservation (Hector G,. Ullman J.D., Widom J.,
2009). BCNF and 3NF are in position to check lossless join decomposition and dependency preservation. To
check if a relation schema R is in 3NF or BCNF, it suffices to check only the dependencies in the given set
functional dependencies F for violation of 3NF or BCNF rather than checking all dependencies in F+ closure.
If none of the dependencies in F causes a violation of 3NF or BCNF then none of the dependencies in F+ will
cause a violation of 3NF or BCNF either. However, using F is incorrect when testing a relation in a
decomposition of R. Assuming we have a schema R(ABCD) with functional dependencies (FD) A→B and
B→C. The keys are AD, ABD and ACD. Based on these keys and FD, let decompose the relation into
R1(AB) and R2(ACD). Neither of the dependencies in F contain only attributes from ACD so we might be
mislead into thinking R2 satisfies 3NF or BCNF. In fact, dependency A→C in F+ shows that R2 is not in
BCNF.

The poor decomposition of a relation when violation 3NF or BCNF indicated that teaching relational
decomposition is a challenge to database designers and computer science students. The classical database

+ E-mail address: aatakinwale@yahoo.com and shewflaw@yahoo.com

Akinwale Adio Taofiki, et al: A Visualization Tool for Teaching and Learning Database Decomposition System

JIC email for contribution: editor@jic.org.uk

4

decomposition technique has often relied in the definition of decomposition algorithms. Some database
textbooks and tutorials include decomposition algorithms to split a relation into various relations if it violates
the principles of 3NF or BCNF using FDs and hope the students will be able to apply the definition of the
decomposition algorithms. These approaches do not encourage many computer science students to efficiently
capture the principle of relational schema decomposition. For example, for every set of attributes iRα ⊆ ,

we need to check that α+ , the attribute closure of α either includes no attribute of iR α− or includes all

attributes of iR . If the above condition is violated by some α β→ in F, the dependency

() iRα α α+→ − ∩ can be shown to hold in iR and iR violate BCNF. This aspects requires extensive
data structure background that most computer science students lack. The objective of this work is to design
an educationally efficient visualization of decomposition relational schema in database management system.

2. Literature review
E.F. Codd, the inventor of the relational model, introduced the concept of normalization and what we

now know as the First Normal Form (1NF) in 1970. Codd went on to define the Second Normal Form (2NF)
and Third Normal Form (3NF) in 1971, and Codd and Raymond F. Boyce defined the Boyce-Codd Normal
Form in 1974. Higher normal forms were defined by other theorists in subsequent years, the most recent
being the Sixth Normal Form (6NF) introduced by Chris Date, Hugh Darwen, and Nikos Lorentzos in 2002.
Since the introduction of E.F Codd’s work on normal forms in 1970, Bernstein (1976), Diederich and Milton
(1988), Concepcion and Villafuerte (1990), and Reiner (1994), proposed tools and algorithms to synthesize a
normalized database using functional dependencies. Maier (1998) indicated that normalization tends to be
complex for average designers. Jarvenpaa and Machseky (1989) and Bock and Ryan (1993) showed that
relational data model leads to poor designer performance. All these imply that teaching normalization is a
challenge to information technology tutors (Kung and Tung, 2006).

The study of normalization provides the designer of schemas with a useful set of concepts which
supports the integrity and consistency of data. Visualizing the process will aid better understanding as how to
design a schema that provides a normal form for a relation such that relation will be free of all data
anomalies (insertion, deletion, and update).

Mitrovic (2002) developed a self-explanatory tool called NORMIT, a data normalization tutor. NORMIT
is a problem-solving environment, which complements conventional classroom teaching and deep
understanding of the domain.

Jurgens (2004) developed Database Normalizer (DN) which works with functional dependencies to
compute normalization properties of relational database schemas. It determines the normal form, a schema,
and compute candidate keys and equivalent tuples. In addition to these analysis features it implements a
synthesis algorithm that can create relational schemas from functional dependencies that are guaranteed to be
in third normal form and contain a minimal set of relations. This is meant to be used to support the process of
learning about database normalization.

Giacomo (2004) also developed a java based software Normalizer that allows one to try out some
Relational Database Theory Algorithms. It works on Relational Schemas, sets of Attributes and sets of
Functional Dependencies. The main functions supported are: test if a relation satisfies BCNF or 3NF,
decompose a relation in a set of relations all satisfying BCNF or 3NF, find all keys and prime attributes for a
relation, compute closures of sets of attributes, compute projections of sets of dependencies, and later find
canonical covers of sets of dependencies.

Kung and Tung (2006) developed a web-based tool to enhance teaching/learning of database
normalization. The tool is being used for relational data modeling in systems analysis and design database
management courses.

Nikolay Georgiev (2007) developed a web-based learning environment, called LDBN (Learn Database
Normalization) with javascript and Ajax where students can test their knowledge on the subject of relational-
database normalization online. Here students meant to choose an assignment from list of assignments,
submitted by other users (lecturers). After an assignment has been loaded, the students try to solve it through
the LDBN process. The LDBN cannot handle multi-valued dependencies (MVD) and thus cannot handle
higher normal forms such as 4NF and above.

Murray & Guimaraes (2009) presented developed Animated Courseware Support for Teaching Database

Journal of Information and Computing Science, Vol. 7 (2012) No. 1, pp 003-010

JIC email for subscription: publishing@WAU.org.uk

5

Design. This paper presents a set of software animations designed to support the teaching of database design
concepts. They are intended to provide supplemental instructional support and also provide students with
additional learning opportunities.

In all the papers reviewed above, none referred to visualization as a more effective way of understanding
database decomposition process. Hence, developing an effective visualization tool for teaching and learning
database decomposition, with emphasis on a simple user friendly interface that will assist computer science
students as well as database designers better understand the theoretical concepts underlying database
decomposition.

3. Theoretical aspect of decomposition
The decomposition of R into relations with attribute sets andα β is dependency preserving if

()F F Fα β
+ +∪ =

and attribute sets , andα β χ are also dependency preserving if

α βχ α β α χ→ ⇒ → ∧ →

Fα is the set of all functional dependencies in F + that involve only attribute in α . This means that

taking the dependencies in F and Fα β and computing the closure of their union gets all dependencies in the
closure of F back.

Assuming α β→ is the dependency that generated 1, 2, 3(,...,)i nR R R R R= in the algorithm. Ρ must be

in orα β . Since Ρ is in iR and α β→ generate iR .

Let consider two possible cases
 (1) Ρ is in β but not α

 (2) Ρ is in α but not β

Case one: Ρ is in β but not α

Let define the three conditions for 3NF
(1) α β→ is a trivial functional dependency

(2) α contains a key for R
(3) Every βΡ ∈ is part of some super keys of R

The second condition of 3NF is satisfied since α must be a super key.
Case two: Ρ is in α but not β

The third condition in the definition of 3NF is satisfied since α is a super key.
Assume α is not a super key and we have

 : functional dependency in Rα β→

 : ifunctional dependency that was used to generate Rα β→

α∀ must contain some attributes that are not in α

(i) Since α β→ is in F + it must be derivable from cF by using attribute closure on α
(ii) Attribute closure cannot have use α β→ if it had been used. α must be contained in the attribute

closure of α which is not possible since we assumed α is not a super key
(iii) Using ({ }) andα β α β→ − Ρ → , we can derive α β→ . In this case α→Ρ is nontrivial

functional dependency since andα αβ α⊆ Ρ ∉
(iv) Then, Ρ is extraneous in the right hand side of α β→ , which is not possible because α β→ is in

cF

Akinwale Adio Taofiki, et al: A Visualization Tool for Teaching and Learning Database Decomposition System

JIC email for contribution: editor@jic.org.uk

6

(v) Thus, if Ρ is in β then α must be a super key

4. Decomposition design methodology
The architecture of the visualization database decomposition system is divided into two layers; namely,

application and logic layer

4.1. Application layer
In this layer, the users interact with the application interface through operations of entering relational

name, number of attributes and construction of functional dependencies (fds). All these operations generate
events by moving from one step to another and each move sends request to the logic layer.

4.2. Logic layer

 1: Decomposition design

Figure 1

 yes

 no

 yes

 yes

 no
 yes

 yes

 No

 yes

Does the relation satisfy BCNF
based on FD’s?

start

Does the relation satisfy 1NF ?

Does the relation satisfy 2NF
based on FD’s?

Does the relation satisfy 3NF
based on FD’s?

decompose

decompose

decompose

Does the decomposition satisfy
lossless join and preserve
functional dependencies?

decompose

stop

Compute:

- 3NF Synthesis algorithm

- Canonical cover algorithm

- Dependency preserving

 Algorithm

Journal of Information and Computing Science, Vol. 7 (2012) No. 1, pp 003-010

JIC email for subscription: publishing@WAU.org.uk

7

The logic layer consists of decomposition of 1NF to 2NF if a relation violates 1NF, 2NF to 3NF if it
violates 2NF, 3NF to BCNF if it violates 3NF and BCNF if it violates BCNF. This step is illustrated in
figure 1. Decomposition of a relation from 1NF to 2NF or 3NF or BCNF relies in splitting the relational
schema into two or more relations taking into consideration the principle of normalization of atomic
attributes, prime and non-prime attributes, partial and transitive dependencies and consideration of the super
key impact. For example, if a relation violates 3NF, its decomposition algorithm is illustrated in figure 2.
Figure 3 also shows Boyce Codd Normal Form decomposition algorithm in case any relation violates BCNF.
If a relation fails to satisfy the principles of lossless join and preservation dependencies, the work employ
3NF synthesis algorithm, canonical cover and dependency preservation algorithms as described in figure 4a
and 4b together with 3NF decomposition algorithm in figure 2.

Let cF be the canonical cover of F
 n = 0;
 for each dependency α β→ in cF

 if none of schemes in (1, 2, 3,... 1)i i nR = − contains αβ then
 n = n + 1;
 nR αβ=
 end if
 If none of the schemes in (1, 2, 3,... 1)i i nR = − is contained in nR

 remove iR
 end if
 end for
 If none of the schemes (1, 2, 3,... 1)i i nR = − contains a candidate key for R then
 n = n + 1;
 nR = any candidate key for R
 end if
return 1, 2, 3(,...,)nR R R R

 Figure 2: Decomposition algorithm into 3NF

 result = { }R
 execute = false
 compute F +
while (not execute) do
 if (there is a schema iR in result that is not in BCNF) then
 begin
 let α β→ be a nontrivial functional dependency that

holds on iR such that

 iRα→ is not in F + and α β φ∩ =

 result = (result -) () (,)i iR R β α β∪ − ∪ ;
 end;
 execute = true

Figure 3: BCNF decomposition algorithm

The theory in section 3 and decomposition design in figure 1 show that a relation that is in BCNF which
satisfies lossless join operation and preservation dependencies is also equal to a relation in 3NF after
computing the algorithms of 3NF synthesis, canonical cover and preservation dependency.

For example, a canonical cover cF for F is a set of dependencies cF for which cF F⇔ , and there is
no functional dependency in cF that are superfluous or containing extraneous attribute. Each left side of

Akinwale Adio Taofiki, et al: A Visualization Tool for Teaching and Learning Database Decomposition System

JIC email for contribution: editor@jic.org.uk

8

functional dependency in cF is unique. extraneous attribute A in α β→ in R is defined as

1: ; { } {() }A F F Aα α β α β∈ ⇒ − − ∪ − →
2 : ; { } { ()}A F A Fβ α β α β⊂ − → ∪ → − ⇒

The result of the theory is that there is not always a lossless join decomposition in BCNF which is also
dependency preserving. Moreso, there is always a lossless join decomposition into 3NF which is also
dependency preserving with respect to F

 cF F= ;
 repeat
 apply union role (right side of functional dependency)
 find functional dependency with extraneous attributes
 (left or right side)
 and delete them
 until cF does not change

Figure 4a: Canonical cover algorithm

 Result = α ;
 While (changes to result) do
 For each iR in the decomposition

 T = (result)i iR R+∩ ∩
 Result = result t∪

Figure 4b: Proposed dependency preservation algorithm
5. System implementation

The algorithms of the first, second, third and boyce-codd normal forms and decompositions in figure 2, 3,
4a. and 4b were coded in Java programming language. The work also employed closure and database keys
algorithms to derive keys which were used to determine normal forms violation. The interface was designed
to accept the relation name, number of attributes, attribute names and functional dependencies. The system
accepts these parameters and decompose the relation schema if it violates any normal form. It is possible for
the system to use the derived keys to check if a relation violates 3NF or BCNF. For demonstration purpose, a
relation R and three attributes A, B and C are entered into figure 5 together with functional dependencies of
A→B, B→C. Based on the number of attributes and functional dependencies, the figure displays the
derived keys and unordered normal forms of 1NF, 2NF, 3NF and BCNF. The user can move from one
normal form to another in other to check if a relation violates the normal forms. The effect change is
displayed by showing green or red light. Green light indicates that the normal form is okay while red light
indicates violation and the system is automatically decomposed into appropriate relations. By moving the
arrow into 3NF as shown in figure 5, the system displays red which indicates violation and the system was
decomposed into R1(A, B) and R2(B, C). The R3() in the figure 5 shows that the relation can only be
decomposed into R1 and R2.

The same process was performed by changing the functional dependencies into {A→B, AB→C} using
the same attribute of A, B and C as illustrated in figure 6. By moving the arrow into 3NF, the result shows
that the relation does not violate by indicating a green light.

6. Results and findings
Students in the Department of Computer Science, University of Agriculture, Abeokuta, Nigeria,

normally offer database design (CSC422) at 400 level. Out of fifteen weeks course lecture of 60 hours,
Lecturers and Tutors always use three weeks on normalization / decomposition topic. In their examination
question, one question usually comes up. For the academic session between 2005 and 2008, eighty five out
of four hundred and twenty three did normalization / decomposition questions. The detailed comments on
student’s performance on question by question by the External Examiner indicated that students found it
difficult to decompose a relation when it violates either 3NF or BCNF using decomposition algorithm.

Due to the poor performance of the students on normalization / decomposition topic, a visualization tool

Journal of Information and Computing Science, Vol. 7 (2012) No. 1, pp 003-010

JIC email for subscription: publishing@WAU.org.uk

9

explained above was developed as part of teaching technique. In the academic session of 2008/09 and
2009/10, two hundred and nine out of two hundred and nineteen students answered the normalization /
decomposition question using the developed tool. The performance on this question was impressive
according to the External Examiner report on question by question. The means and standard deviation were
computed based on the step-wise grade of the range of 70-100 as A, 60-69 as B and 50-59 as C. The other
ranges are 45-59 as D, 40-44 as E and 0-39 as F. The performance computation for the academic session
between 2005 and 2008 using conventional teaching and academic session from 2008 to 2010 using the
visualization tool for teaching decomposition techniques was compared as shown in table 1.

Figure 5: Sample of decomposition process by selecting 3NF

Figure 6: Sample of decomposition process by replacing FDs.

Akinwale Adio Taofiki, et al: A Visualization Tool for Teaching and Learning Database Decomposition System

JIC email for contribution: editor@jic.org.uk

10

Table 1: Means and standard deviation of student performance

 Conventional Visualization

 Mean STD. DEV. Mean STD. DEV.

Difficulty 3.73 1.17 4.33 1.07

Helpfulness 2.97 1.09 3.70 0.92

Perceived Grade 2.83 0.95 3.97 0.67
From the table 1, it can be seen that the conventional technique of teaching database decomposition is

more difficult to understand with a mean score of 3.73 compared to 4.33 for the visualization tool. The
visualization tool is more helpful than conventional with standard deviation score of 0.92 compared to 1.09
for conventional. The perceived grade after using the visualization tool is higher than conventional with
mean of 3.97 as against 2.83 for conventional/ Hence; visualization tool helps students validate/check their
learning of database decomposition.

7. Conclusions and future research direction
A visualization tool for teaching and learning decomposition of relational database schemas has been

developed. All the necessary decomposition algorithms were used to generate a user friendly interface for
accepting input parameters of relation and its functional dependencies. The tool decomposes relational
schema if it violates 3NF or BCNF. In survey, the result shows that the tool has a positive impact on
students’ perception to learn database normalization / decomposition topic. Effort is on to make sure that the
decomposed relations are reversed back to the normal schema without loss or adding extraneous values.

8. References
[1] P. A. Benstern. Synthesizing third normal form relations from functional dependencies. ACM Transactions in

database systems. 1996, 1(4): 277-298.
[2] D.B Bock and T. Ryyan. Accuracy in modeling with extended entity relationship and object oriented data models.

Journal of database management. 1993, 4(4): 30-39.
[3] E. F. Codd. A relational model of data for large relational databases. Communication of the ACM. Vol. 12, pp.

377-387
[4] A. I Concepcion and R. M. Villafuerte. As Assistant Database Design System. Proceedings of the Third

International Conference on Industrial Engineering Application of Artificial Intelligence and Expert Systems.
1990.

[5] C. J. Date. An Introduction to Database System(7th Edition). Addison-Wesley, Reading MA, 2000.
[6] J. Diederic and, J. Milton. New Methods and Fast Algorithms for Database Normalization. ACM Transaction on

Database Systems. 1988, 13(3): 339-365.
[7] D. R. Giacomo. Dynamic Visualization. Proceeding CHI94, Human Factors in Computing Systems. New York:

ACM Press, 2004.
[8] G. Hector, J.D. Ullman and J. Widom. Database System. Addison-Wesley Prentice Hell, 2009.
[9] S. I. Jarvenpaa and J. J. Data Analysis and Learning, An Experimental Study of Data Modeling Tools.

International Journal of Man-Machine Studies. 1989, 31: 367-391.
[10] E. Jurgen. Database Normalizor. Technical University, Munchen Germany, 2004.
[11] H. Kung and H. Tung. A web-Based Tool to enhance Teaching/Learning Database Normalization. Proceedings of

the 2006 Southern Association for Information Systems Conference. Jacksonville, 2006.
[12] D. Maier. The Theory of Relational Database. Rockville MD: Computer Science Press, 1998.
[13] A. Mitrovic. A Web-Enabled Tutor for Database Normalization. Proceedings of the International Conference on

Computers in Education (ICCE). New Zealand: Auckland. 2002, pp. 1276-1280.
[14] E. Ramez and N. Shamkant. Fundamental of Database Systems. Benjamin Cummings Publishing Company, 1994.
[15] D. Reiner and A. Rosenthall. A Tools and Transformation Rigorous and Otherwise – for Practical Database

Design. ACM Transactions on Database Systems. 1994, 19(2): 167-211.
[16] G. Nikolay. Learnt Database Normalization. http://www.cs.umu.se.education.examina.reporter/n
[17] M. Murray and M. Guimaraes. Animated Courseware Support for Teaching Database Design. Journal of

Computing Science. 2008, 24(2): 144-150.

