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Abstract.  In this paper, we use a numerical method based on B-spline function and collocation method to 
solve second-order linear hyperbolic telegraph equation. The scheme works in a similar fashion as finite 
difference methods. The results of numerical experiments are presented, and are compared with analytical 
solutions to confirm the good accuracy of the presented scheme.  
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1. Introduction  
We consider the second-order linear hyperbolic telegraph equation in one-space dimension, given by 
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subject to initial conditions 
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and Dirichlet boundary conditions 
,0),(),(),(),( 10 ≥== ttgtbutgtau                                                       (4) 

where α and β  are known constant coefficients. We assume that )(),( 10 xfxf  and their derivatives are 
continuous functions of x , and ,1,0),( =itgi and their derivatives are continuous functions of t . Both the 
electric voltage and the current in a double conductor, satisfy the telegraph equation, where x  is distance and 
t  is time. For 0>α  and ,0=β Eq. (1) represents a damped wave equation and for 0>> βα , it is called 
telegraph equation. 

The hyperbolic partial differential equations model the vibrations of structures (e.g. buildings, beams and 
machines) and are the basis for fundamental equations of atomic physics. Equations of the form Eq. (1) arise 
in the study of propagation of electrical signals in a cable of transmission line and wave phenomena. 
Interaction between convection and diffusion or reciprocal action of reaction and diffusion describes a 
number of nonlinear phenomena in physical, chemical and biological process [1]-[4]. In fact the telegraph 
equation is more suitable than ordinary diffusion equation in modeling reaction diffusion for such branches 
of sciences. For example biologists encounter these equations in the study of pulsate blood flow in arteries 
and in one- dimensional random motion of bugs along a hedge [5]. Also the propagation of acoustic waves in 
Darcy-type porous media [6], and parallel flows of viscous Maxwell fluids [7] are just some of the 
phenomena governed [8]-[9] by Eq. (1). 

The theory of spline functions is very active field of approximation theory, boundary value problems and 
partial differential equations, when numerical aspects are considered. Among the various classes of splines, 
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the polynomial spline has been received the greatest attention primarily because it admits a basis of B-splines 
[10]-[14] which can be accurately and efficiently computed. As the piecewise polynomial, B-splines have 
also become a fundamental tool for numerical methods to get the solution of the differential equations. In 
this paper, numerical solution of the hyperbolic telegraph equation by using the quartic B-spline collocation 
scheme is proposed. The collocation method together with B-spline approximations represents an 
economical alternative since it only requires the evaluation of the unknown parameters at the grid points. As 
is known, the success of the B-spline collocation method is dependent on the choice of B-spline basis. The 
quartic B-spline basis has been used to build up the approximation solutions for some differential equations. 
For instance see [15]-[20]. 

The layout of the article is as follows. In Section 2, we show that how we use the B-spline collocation 
method to approximate the solution of the hyperbolic telegraph equation. To demonstrate the efficiency of 
the proposed method, numerical experiments are carried out for several test problems and results are given in 
section 3. Finally the conclusion is given in the last Section. Finally some references are introduced at the 
end. Note that we have computed the numerical results by Matlab programming. 

2. Quartic B-spline collocation method 
Let be a uniform partition of an interval ],[ ba as follows bxxxa N =<<<= ...10  where 

,1 jj xxh −= +  .1,...,1,0 −= Nj  The quartic B-splines are defined upon an increasing set of 1+N knots over 
the problem domain plus 8 additional knots outside the problem domain 8 additional knots are positioned as 

01234 xxxxx <<<< −−−−  and 4321 ++++ <<<< NNNNN xxxxx . 

The set of quartic B-spline { }112 ,...,, +−− NQQQ  form a basis over the problem domain ],[ ba [12]. 

Let ,1,...,1,2),( +−−= NmxQm   
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be quartic B-splines, which vanish outside interval. Each quartic B-spline cover five elements so that an 
element is covered by five quartic B-splines. 

Now the solution of the problem is considered as follows: 

,)()(),(
1

2
∑
+

−=

=
N

m
mmN xQttxU δ                                                                  (6) 

where 1,...,2, +−= Nmmδ  are unknown time dependent quantities to be determined from boundary 

conditions and the initial conditions. The values of  )(xQm  and its derivatives ),(' xQm  )('' xQm and )(''' xQm  
at the knots are given in Table 1. 

Table 1: The values of .
'''''' ,,, mmm QQQmQ  

x  2−ix  1−ix  ix  1+ix  2+ix  3+ix  

Q  0 1 11 11 1 0 
'
iQ  0 h4−  h12−  h12  h4  0 
''

iQ  0 212 h  212 h−  212 h−  212 h  0 
'''

iQ  0 324 h−  372 h  372 h−  324 h  0 

For every x  by using the Taylor expansion in the time direction, using the notation ),( ii txuu = where 
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ttt ii Δ+= −1  we have the following difference schemes 
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Now, let us discretize Eq. (1) according to schemes Eqs. (7)-(10) in the following form 
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Rearranging Eq. (11) we obtain 
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and the initial conditions are given in Eqs. (2) and (3) as follows 
,)()0,( 00 utfxu ==                                                                       (13) 
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).(101 xtfuu Δ+=                                                                            (15) 
Substituting Eq. (15) into Eq. (12) then is obtained as follows 
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The approximate solution of Eqs. (16)-(18) are sought in the form of the B-spline functions ),( txU N , it 
follows that 
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and the boundary conditions (4) can be written as 
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The spline solution of Eq. (19) with the boundary conditions (22) and (23) are obtained by solving to the 
following matrix equation. The value of spline functions at the knots { }N

iix 0= are determined using Table 1. 
Then the B-spline method in matrix form can be written as follows: 

B,AX =                                                                                 (24) 

where ],,,...,,[ 112 +−−= NNX δδδδ  while )4()3( +×+∈ NNRA  and )3( +∈ NRB are obtained from left and right 
hand sides of Eqs. (19) , (22) and (23), respectively as follows: 
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It is easy to see that, the same approximation can be applied the other Eqs. (20) and (21) together with 
the corresponding boundary conditions (22) and (23). We solve 1−n  times the system (24) by means of a 
home-made program which is based on singular value de-composition (SVD) method [21] and in each step 
obtain ).1,..,1)(,(),...,,( 0 −= nitxutxu iNi  

The condition number of A  
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depends on βα ,  distance of collocation points and tΔ . Therefore a small perturbation in initial data may 
produce a large amount of perturbation in the solution. Also the condition number grows with N for fixed 
values of α and β . Generally for a fixed number of collocation points ,N  smaller values of α and β  
produce better approximations, but the matrix A  will be more ill-conditioned. 

3. Numerical examples 
In this section, the method discussed in Sections 2 is tested on the following problems. Pointwise error is 

measured by using the root mean square error 2L  and maximum error ∞L : 
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Example 3.1: We consider the hyperbolic telegraph Eq. (1) with ,5,10 == βα   
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The analytical solution of this example [22] is )2)(tan(),( txtxu += .  The root-mean- square error 

2L  and maximum error ∞L  are presented in Table 2. The space-time graph of the estimated solution up to 
1=t  is shown in Figure 1. The graph of analytical and estimated solutions for some different times and 

]2,0[∈x  is presented in Figure 2. 

Table 2: Results at 001.0=Δt  and 001.0=Δx  in Example 3.1.  

t 2.0=t  4.0=t  6.0=t  8.0=t  1=t  

∞L  410774.2 −×  4100782.7 −× 3103848.1 −× 3100930.3 −×  2103424.1 −×

2L  8103189.3 −×  7103067.2 −× 710208.8 −×  610237.3 −×  5102782.3 −×
 
Example 3.2: Consider the hyperbolic telegraph Eq. (1) with ,2,4 == βα   

+−= α22(),( txf  )sin()exp()2 xt−β  and .0 π≤≤ x  The initial conditions are given by  

⎩
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−=
=

),sin()0,(
),sin()0,(

xxu
xxu

t

                                                                       (25) 

and the boundary conditions 
.0),(),0( == tutu π                                                                        (26) 

The analytical solution of this example [22] is )sin()exp(),( xttxu −= . The space-time graph of  the 
numerical solution up to 2=t  is presented in Figure 3. The graph of analytical and estimated solutions for some 
different times and ],0[ π∈x  is presented in Figure 4. The accuracy of the B-spline method is measured by using the 
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2L  and ∞L  errors. The errors are reported in Table 3. 

  
Fig. 1: Three-dimensional plot, with 001.0=Δt  and 

005.0=Δx  in Example 3.1. 
Fig. 2: Comparisons between numerical and analytical 
solutions of Eq. (1) in ststst 6.0,4.0,2.0 === , 

stst 1,8.0 ==  with 001.0=Δt  and 005.0=Δx  in 
Example 3.1. 

  
Fig. 3: Three-dimensional plot, with 0001.0=Δt  and 

02.0=Δx  in Example 3.2. 
Fig. 4: Comparisons between numerical and analytical 

solutions of Eq. (1) in 
ststst 2.1,8.0,4.0 === , stst 2,6.1 ==  with 

0001.0=Δt  and 02.0=Δx  in Example 3.2. 

  
Fig. 5: Three-dimensional plot, with 01.0=Δt  and 

005.0=Δx  in Example 3.3. 
Fig. 6: Comparisons between numerical and analytical 

solutions of Eq. (1) in ,3,2,1 ststst === stst 5,4 ==  
with 01.0=Δt  and 005.0=Δx  in Example 3.3. 

Example 3.3: In this example, we consider the hyperbolic telegraph Eq.(1) with ,1,
2
1

== βα  

)exp(2)exp())(22(),( 222 tttxxtttxf −+−−+−=  and .10 ≤≤ x  The initial conditions are given by 

,0)0,()0,( == xuxu t                                                                     (27) 
and the boundary conditions 
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.0),1(),0( == tutu                                                                         (28) 

Table 3: Results at 0001.0=Δt  and 02.0=Δx  in Example 3.2.  

t 4.0=t  8.0=t  2.1=t  6.1=t  2=t  

∞L  3109.2 −×  3102.3 −×  3108.2 −×  3103.2 −×  3108.1 −×  

2L  6108690.5 −×  5100192.1 −× 6103591.9 −× 6109011.6 −×  6105782.4 −×

Table 4: Results at 01.0=Δt  and 005.0=Δx  in Example 3.3.  

t 1=t  2=t  3=t  4=t  5=t  

∞L  4109175.1 −×  4101387.1 −× 4107053.1 −× 4100271.2 −×  5108405.9 −×

2L  8101120.2 −×  9105830.6 −× 8105660.1 −× 8101734.2 −×  9102713.5 −×

Table 5: Results at 001.0=Δt  and 005.0=Δx  in Example 3.4.  

t 2.0=t  4.0=t  6.0=t  8.0=t  1=t  

∞L  5104279.2 −×  5109315.7 −× 4102097.1 −× 4104883.1 −×  4106462.1 −×

2L  10106998.1 −×  9106707.2 −× 9107849.6 −× 8100726.1 −×  8103438.1 −×

The analytical solution of this example [22] is )exp()(),( 22 ttxxtxu −−= . The accuracy of the 
scheme is measured by using the 2L  and ∞L  errors. The errors are reported in Table 4. 

The space-time graph of the numerical solution up to 5=t is presented in Figure 5. The graph of 
analytical and estimated solutions for several different times and ]1,0[∈x  is presented in Figure 6. 

  

Fig. 7: Three-dimensional plot, with 001.0=Δt  and 
005.0=Δx  in Example 3.4. 

Fig. 8: Comparisons between numerical and analytical 
solutions of Eq. (1) in ststst 6.0,4.0,2.0 === , 

stst 1,8.0 ==  with 001.0=Δt  and 005.0=Δx  in 
Example 3.4. 

Example 3.4: Consider Eq. (1) with )exp(2)exp())(22(),(,2,6 222 tttxxtttxf −+−−+−=== βα   
and 10 ≤≤ x  and the following conditions: 
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The analytical solution of this example [22] is ).sin()cos(),( xttxu =  The root-mean- square error and 
and maximum error are presented in Table 5, also the space-time graph of the estimated solution up to 1=t   
is presented in Figure 7. The graph of analytical and estimated solutions for some different times and 

]1,0[∈x  is presented in Figure 8. 

4. Conclusion 
In this paper, we have been discussed on second-order hyperbolic telegraph equation. A numerical 

treatment for the second- order hyperbolic telegraph equation is proposed using a collocation method with 
the quartic B-spline functions. The numerical solutions are compared with the exact solution by finding 2L  
and ∞L  errors. Most importantly, quartic B-spline methods are especially advisable for obtaining numerical 
solutions of differential equations when higher continuity of the solutions exist. 
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