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Abstract. We report a fourth order accurate numerical technique via nonpolynomial spline for singularly
perturbed singular two point boundary value problems of the form

—au (r)+ f(r,u,u'): 0, u(@)=A, u(b)=B.
The numerical scheme is developed for problems arising in the various fields of science and

engineering. The scheme is three point nonlinear systems of equations. The method is applied to a
few test examples to illustrate the accuracy and the implementation of the method.
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1. Introduction
Consider the following nonlinear singular perturbation problems (SPP)

—au'(r)+ f(r,u,u'):o,u(a):A, ub)=B,a<r<b (1)
where 0 < & <<1, A and B are finite constants and assuming that f is bounded and smooth function
satisfying
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Lim f(r,u,v)= O(|v|2), a<r<banduyveR
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Howes [1], suggested that under the above conditions, the problem (1) posses a unique solution. SPP
occur in many branches of science and engineering such as heat transport problems with large Peclet
numbers, Navier-Strokes flows with large Reynolds numbers, convection-diffusion process, gas porous
electrodes theory, fluid dynamics, chemical kinetics, modeling of steady and unsteady viscous flow problems.
The solution of SPP exhibits a multi-scale character. There are many methods based on finite difference,
boundary element, collocations method etc. available for solving linear SPP[2-10]. Recently, Tirmizi [11],
have proposed a nonpolynomial spline method for linear singular perturbation problems which has second
and fourth order of convergence depending upon the choice of free parameters. Kadalbajoo and Patidar [12]
has considered second order convergent spline in compression technique for the nonlinear singular
perturbation problems. However, their methods are only applicable to non-singular problems. Difficulties
were experienced in the past for the numerical solution of singularly perturbed singular two point boundary
value problems in polar coordinates. The solution usually deteriorates in the vicinity of singularity. The aim
of this paper is to design a computationally efficient numerical technique based on nonpolynomial spline and
finite difference approximations in such a way that fourth order convergence is retained for smaller values of
& and restriction on grid size can be avoided in case of singularity.

In this paper, we are concerned with the problem of applying nonpolynomial spline functions to develop
numerical schemes for obtaining approximate solution for the nonlinear singular two point boundary value
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problems. The C* - differentiability of the trigonometric part of nonpolynomial spline basis compensates for
the loss of smoothness inherited by polynomial splines. The resulting nonpolynomial spline three point
difference schemes are of fourth order accuracy. The importance of our work is that the proposed methods
are applicable to problems both in rectangular and polar coordinates.

The paper is organized as follows: In section 2, we give a brief description of the mathematical method.
In section 3, we design difference schemes of class of singular equation in operator compact form. Some
nonlinear singular and nonsingular examples are illustrated to justify the accuracy and efficiency of the
proposed method in section 4. The numerical results exhibit oscillation free solution for 0 < & <<1, even in
the vicinity of the singularity.
2. Nonpolynomial Spline Finite Difference Method

For the numerical approximation of problems (1), we divided the domain Q = [a, b] into a set of nodes
with interval of h =1/ (N +1), N being a positive integer. The nonpolynomial spline approximations is

obtained on Q that consists of the central point r, =a+kh and two neighbouring grids f4 . The

approximate solution of this equation is sought in the form of the function Sy (I’) which interpolates
f (r, u, u') at I defined as follows
Sk(l’)z ak Sil’lZ‘(r - I’k)-i-ﬂk COSZ‘(F - I’k)-i- ]/k(r - I’k)-i- 5k, k= O(I)N (2)

where ay, Pk, 7k, and O are constants and 7 is the frequency of the trigonometric functions. Thus, the

cubic nonpolynomial spline is defined by the relations:
i) S(r)eCc®(Q) 3)
i) S (e )=My. S(n)=uy, k=0()N +1

We obtain via algebraic calculations the following expressions

L, ) =D
ag =———(Mgcos&-My,). Bk =-—5 My
6? sin @ 6*
1 h h?
7k =1 Usn =)+ —5 My =My), S =ug +—5 My
h 0 0
where @ =hr.
Following, Islam and Tirmizi [11, 13] and , Rashidinina et. al. [14], we obtain
Uy —2Uy + Uy —h% (@M +2 My +aM,1)=0, k =1(1)N )
where, o = 6’2—sm6’, B= smt92—6’cost9
0° sin @ 0°sin @
Consider the following approximations
At Uy — Uk N + 33Uy 1 F4Up LU - N
O =—KH_—K=L gy g == KELT TR CTKEL = f(rkilaukilaukil)
2h 2h
Gic =t +ho(He - i) 5)

1 5
The above nonpolynomial spline finite difference approximation for « =E , B :E, have local

4
truncation errors of — T—z(l + Zng)Um(I’k )+ O(h6 )

3. Application to Singular Problems

We discuss the application of method (4), for the numerical solution of model problems of various
classes of singular perturbation problems. Consider the following singularly perturbed model problem
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—eu +a(ru +b(ru+se" +su’ +53(u')2 +ouu +g(r)=0, reQ (©)

A A
where a(r):— and b(r)=——2. For A =1 and 2 the above equation represents in cylindrical and
r r

spherical symmetry respectively. The model problem is considered in such a way that self-adjoint singularly

perturbed problem and general linear singularly perturbed two point boundary value problems are the
particular cases of the equation (6).

Now, we discuss the application of nonpolynomial spline formula (4) and finite difference
approximations (5) to the nonlinear singularly perturbed singular equation (6), we obtain

£5F U =2h2wﬂakak—1(5r2 _ﬂr5r)~1k +2h2a’ﬂakak+1(5r2 +/lr5r)1k
+ h3a)ﬂakbk_1 (2,[1,»5} —é}z _2)‘|k + h3a),6’akbk+1 (2yr§r + 5,»2 + 2)Uk
+2h°wpay (gx 41 - 9k 1 )+2h° wpab (2 +57 )’k (2¢ 8¢ Jug

(1+1 52)U
r Yk

+hwpB6,a, (uk§r2uk +(2up Spu ) +257u, )+ hBay (4w935r2 +1)Jk(2yr5r i
+haay (ﬂr5r —5r2)-'k +hoay .\ oy +5r2)Jk +2h? Aoy uy

+ hzabk_l(l—yrér +%5r2juk + hzabk+l(1+,ur5r +%5r2juk

+h2a(gys1 + Gkt )+ 207 Bay + 200387 uy

+ h2a02(2uk5r2uk +%(2yr5ruk)2 +%5r4uk +2u;%j
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|
2 HropUg o o=HrOrUg (1+25r jUK 2 Uk 2 6
+h“ab\e +e +2h“p\6ie™* + 6,ui 1+ OLh” | (7)

1
The nonpolynomial spline finite difference method (7) is of order four for w = —I(see Bawa [2]).
&

However, the method fails when the coefficients a(r), b(r) and g(r) contains singularities and the

solutions are to be determined at k = 1. We overcome this difficulty by modifying the scheme (7) in such a
way that solutions retain the order and accuracy even in the vicinity of the singularity. We use following
Taylor’s approximation

2 3 h 4 "

o+ e ay " a0l
a4+ =a, tha, +—a, +—a, +—a, +—a;, +0lh 8
k+1=ak kTt At Ak £k (®)

Using the Taylor’s approximation for a4, D+ and g4 in equation (7) and neglecting O(h6)

terms, we obtain the following nonpolynomial spline schemes in operator compact form
1
Ay =21 Bodyage" (24,5, Juy +h> 6,k (Z a(uesoug ) + 28+ 2a + 055r2Ukj
+ h4 (ag;; + ab;('uk + 4ﬂa)akb|'(uk + 4ﬂa)ak g|'( )

+ h3(ab|'( +4fwbra, Uy +%aai; +2 fway (bk +ay )j(zy@ J T
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+h%ﬁ@a@k+%a@j@mﬁmkf

+ hz(zaazuk + 4 fwbay Uy +4ﬂa)a|% + Zaa;( + aby )5r2uk

+ h2(2abkuk +2a0,Uf +2BOLUE +2 Sy uy +2(a + ,H)gk)

+ h((ga@; +4Bw033y j&?uk +aO4Uy +ady + BO4Uy + fay J(zyra} i
L8

: (o + B)2prSpuy f +2a0; (5r2uk)z — e52uy )

Note that the nonpolynomial spline difference scheme (9) is of fourth order accurate and free from the
terms 1/(k +1) and hence, easily solved for k = 1(I)N .

4. Computational Results

Table 1: Root Mean Square Errors for Example 1.

2_4 2_5 2-6 2-7 2-8 2-9 2-10
6,=0,0,=0,0; =1,6, =0
16 4.17e-06 2.09e-06 1.04e-06 5.21e-07 2.61e-07 1.30e-07 6.52e-08
32 1.09e-06 5.45e-07 2.72e-07 1.36e-07 6.81e-08 3.41e-08 1.70e-08
64 2.79e-07 1.39e-07 6.97e-08 3.48e-08 1.74e-08 8.71e-09 4.35e-09
128 7.05e-08 3.52e-08 1.76e-08 8.81e-09 4.41e-09 2.20e-09 1.10e-09
256 1.77e-08 8.86e-09 4.43e-09 2.22e-09 1.11e-09 5.54e-10 2.77e-10

512 4.44e-09 2.22e-09 1.11e-09 5.56e-10 2.78e-10 1.39¢-10 6.94e-11
1024 1.11e-09 5.56e-10 2.78e-10 1.39¢-10 6.95e-11 3.48e-11 1.74e-11
6,=1,60,=0,6=0,0,=0
16 1.07e-08 4.51e-09 1.51e-09 7.41e-10 9.29¢-10 2.29¢-10 8.83e-11
32 7.46e-10 3.13e-10 1.04e-10 5.14e-11 6.92¢-11 1.82e-11 8.95e-12
64 4.92e-11 2.07e-11 6.89e-12 3.39%e-12 4.58e-12 1.21e-12 6.30e-13
128 3.16e-12 1.33e-12 4.42e-13 2.18e-13 2.94e-13 7.82e-14 4.09e-14
256 2.00e-13 8.40e-14 2.80e-14 1.38e-14 1.86e-14 4.80e-15 2.56e-15
512 1.26e-14 5.29e-15 1.75e-15 8.57e-16 1.22e-15 3.72e-16 2.40e-16
1024 7.23e-16 3.25e-16 8.73e-17 2.94e-17 1.04e-16 4.87e-17 1.79e-16
6,=0,0,=16;=0,0,=0
16 6.44e-09 3.22e-09 1.61e-09 8.05e-10 4.03e-10 2.01e-10 1.01e-10
32 4.47e-10 2.24e-10 1.12e-10 5.5%e-11 2.79e-11 1.40e-11 6.99¢-12
64 2.95e-11 1.47e-11 7.37e-12 3.68e-12 1.84e-12 9.21e-13 4.6le-13
128 1.89e-12 9.46e-13 4.73e-13 2.37e-13 1.18e-13 5.92¢-14 2.96e-14
256 1.20e-13 6.00e-14 3.00e-14 1.50e-14 7.49e-15 3.75e-15 1.87e-15
512 7.55e-15 3.77e-15 1.89e-15 9.43e-16 4.72e-16 2.36e-16 1.18e-16
1024 4.71e-16 2.35e-16 1.18e-16 5.88e-17 2.94e-17 1.47e-17 7.35e-18
6,=0,0,=0,6,=0,64 =1
16 1.20e-06 6.00e-07 3.00e-07 1.50e-07 7.50e-08 3.75e-08 1.87e-08
32 3.13e-07 1.57e-07 7.83e-08 3.92¢-08 1.96e-08 9.79¢-09 4.89¢-09
64 8.01e-08 4.00e-08 2.00e-08 1.00e-08 5.01e-09 2.50e-09 1.25e-09
128 2.03e-08 1.01e-08 5.06e-09 2.53e-09 1.27e-09 6.33e-10 3.16e-10
256 5.09e-09 2.55e-09 1.27e-09 6.37e-10 3.18e-10 1.59¢-10 7.96e-11
512 1.28e-09 6.39%¢-10 3.19e-10 1.60e-10 7.98e-11 3.99¢-11 2.00e-11
1024 3.20e-10 1.60e-10 7.99e-11 4.00e-11 2.00e-11 9.99¢-12 5.00e-12
In order to illustrate the performance of the nonpolynomial spline finite difference technique in solving
boundary value problems for singularly perturbed singular and non-singular problems (Ascher et. al. [15],
Chang et. al. [16]) and the efficiency of the method, the following examples are considered. The right hand
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side function and boundary conditions may be obtained using the exact solution u(r) = 8sinh(r) as a test
procedure. The examples have been solved by the presented method with different values of N and &. We

have implemented Newton’s method using five inner iterations as an standard procedure and computed the
root mean square errors(Hageman and Young [18]), defined as

N 2
E Z|Uk ~U ()
Ug — N
k=1
All programs are written in C and computations were carried out using Linux environment. Table 1-2
exhibit the root mean square errors.

Example 1: Consider the following nonlinear non-singular problem

cu +0" +6,u° + 03(u')2 +6uu =g(r), req
The root mean square errors for different values of 6,k = 1(1)4 are tabulated in Table 1.

Example 2: Consider the following nonlinear singular problem
" 2 1 ﬂ/ ' Al
gU +-U —u+e" +u? +(u )Z +uu =g(r), reQ
r r

The root mean square errors for different values of A are tabulated in Table 2.

Table 2: Root Mean Square Errors for Example 2.

(li'l‘ 74 s 6 7 28 29 5710
A=1
16 1.65e-06 2.77e-06 5.69¢-06 1.34e-05 4.12e-05 2.97e-03 7.44e-05
32 2.67e-07 2.74e-07 5.43e-07 1.21e-06 2.98e-06 8.75e-06 7.48e-05
64 6.18e-08 2.97e-08 5.04e-08 1.11e-07 2.59¢e-07 6.42e-07 1.79¢-06
128 1.55e-08 4.83e-09 4.68e-09 9.98e-09 2.31e-08 5.52e-08 1.36e-07
256 3.91e-09 1.11e-09 4.97e-10 8.95e-10 2.06e-09 4.88e-09 1.17e-08
512 9.80e-10 2.74e-10 8.12e-11 8.15¢e-11 1.83e-10 4.33e-10 1.03e-09
1024 2.45e-10 6.86e-11 1.85e-11 8.47e-12 1.63e-11 3.83e-11 9.13e-11
A=2
16 | 553006 | 1.126:05 | 255005 | 666005 | 2.51c:04 | 865c-04 | 1.620-04
30 | 547607 | 1.08¢:06 | 2.39¢:06 | 5.700-06 | 148¢05 | 5.08¢:05 | 1.19¢-05
64 | 57908 | 1.01c07 | 2.20c:07 | 512007 | 124e06 | 3.17¢:06 | 9.73¢-06
128 | 9.02¢:09 | 9.31c-09 | 199608 | 46108 | 1.09¢07 | 2.65¢:07 | 6.67¢-07
256 | 203609 | 9.67e-10 | 1.79¢:09 | 4.12¢:09 | 9.746-09 | 233608 | 5.62¢-:08
512 | 5.03e-10 | 15110 | 1.62e-10 | 3.66e-10 | 8.65¢-10 | 206009 | 4.93¢-09
1024 | 126010 | 3.40e-11 | 1.65c11 | 325¢-11 | 7.67e-11 | 1.82e:10 | #3510

5. Conclusions

The nonpolynomial cubic spline finite difference method can solve general singular perturbation
problems with singularity. The method is fourth order convergent and can be easily implemented. It has been
observed that root mean square errors confirm the order and accuracy of the proposed method. Extension of
the method to higher dimensions is an open problem.
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