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Abstract. In this paper, a ZK(m, n, k) equation with generalized evolution and time-dependent coefficients
is investigated. Exp-function method combined with F-expansion method are used to determine eight
families of exact solutions of exp-function type for this equation. When the parameters are taken as special
values, every family of solution can be reduced to some solitary wave solutions and periodic wave solutions.
The results presented in this paper improve the previous results.
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1. Introduction

Nonlinear partial differential equations (NPDESs) are widely used to describe complex phenomena in
various fields of science, especially in physics. Searching for exact soliton solutions of NPDEs plays an
important and significant role in the study on the dynamics of those phenomena. Up to now, many effective
ansatz methods have been presented, such as the tanh method [1], Jacobi elliptic function method [2], F-
expansion method [3], the Exp-function method [4-7], auxiliary equation method [8,9], and so on. Here, it is
worth to mention that the two methods, the Exp-function method and F-expansion method can be combined
to form one method [10-13].

In this paper, by using Exp-function method combined with F-expansion method, we will study the
ZK(m, n, K) equation with generalized evolution and time-dependent coefficients [14]

(U, +a®)(u™), +bE)U"),, +COU"),, = atu', (1)
where a(t), b(t), c(t) and «(t) are all time-dependent coefficients, while I, m,n and k are integers.

Generally, Eq. (1) is not integrable. In [14], using a solitary wave ansatz in the form of sech” functions,
Triki and Wazwaz obtained an exact one-soliton solution for Eq. (1).

In this work, we will explore more types of exact solutions for Eq. (1).

2. Description of the method

In this section, we review the combining the Exp-function method with F-expansion method [12,13] at
first.

Given a nonlinear partial differential equation, for instance, in two variables, as follows:
p(u,u,,u,u,,u,,...)=0, )
where P is in general a nonlinear function of its variables.
We firstly use the Exp-function method to obtain new exact solutions of the following Riccati equation

(&)= ;—§¢(§) = At yd(&), @

where A and y are arbitrary constants, then using the Riccati equation (3) as auxiliary equation and its
exact solutions, we obtain exact solutions of the nonlinear partial differential equation(2).
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Seeking for the exact solutions of Eq. (3), we introducing a complex variable 77, defined by

n=p&+&, 4
where p is a constant to be determined later, &, is an arbitrary constant, Riccati equation (3) converts to
pe' —A-yp* =0, 5)

where prime denotes the derivative with respect to 7.

According to the Exp-function method, we assume that the solution of Eq. (5) can be expressed in the
following form

a, exp(en)+---+a 4, exp(-dn)
by exp(gr) +-+-+b_; exp(~f77)
where e, d, g and f are positive integers which are given by the homogeneous balance principle, a,, ---,
ay, by,
balance the linear term of the highest order in Eq. (5) with the highest order nonlinear term. Similarly, we
can determine d and f by balancing the linear term of the lowest order in Eq. (5) with the lowest order
nonlinear term, we obtain e=g, d = f . For simplicity, we set e=g=1and d = f =1, then Eq. (6)
becomes

$(n) = (6)

-, b_, are unknown constants to be determined. To determine the values of € and g, we usually

¢(77) — 4 eXp(U) + ao +a, exP(—ﬂ) ’
by exp(17) + by +b_, exp(-7)
Substituting Eq. (7) into Eq. (5), equating to zero the coefficients of all powers of exp(nz)
(n=-2,-1,0,1,2) yields a set of algebraic equations for a,, a,, a,, b, b,, b, and x. Solving the
system of algebraic equations by using Maple, we obtain the new exact solution of Eq. (3), which read

_\/jbl eXp(?’\/_iAé: + éo) +a, exp(—y _éf - fo)
g =——7 - A Ay , ®)
b, exp(7F§ £ &)+ exp(—yFé &)
¥ \/_7 ¥
Ve

where a_; and b1 are free parameters ;

a,” + Ab,? A A A
Vot ) expar, |- D) va v |- Do enp2r -2 6)
4 Ay y y y
/4 1
/4

a,” + Ab,? | A A
(yilAbO)eXp(zy ——&+ &)+ by +bexp(=2y, [-—& &)
. 7 4

where a,, b, and b, are free parameters.

()

¢2 = )

By choosing properly values of a,, a,, b,, b_,, we find many kinds of hyperbolic function solutions
and triangular periodic solutions of Eq. (3), which are listed as follows:

(i)When & =0,b =1,a,==* /—é ,é< 0, the solution (8) becomes

vy
[ A A

¢=— |-—tanh(y,[-—3), (10)
Y Y

and
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¢=—Pcoth(y Ay,
V4 Ve
A A

(ii)When & =0,b =i,a zi\/:,—>0, the solution (8) becomes
4

4
¢ = \/E tan(7\/gcf) ,
4 y
¢ = —\/E COt(V\/Ef) :
/4 4
A A

(iii) When &, =0,b,=0,b, =1, a,=%2 /—— ,— < 0, the solution (9) becomes
vy

and

¢p=— —émmef—é@iamm&/—é@}
v Y v

(iv)When & =0,b,=0,b, =i, a, =42 /—é ,é< 0, the solution (9) becomes
yor
p=- —é[tanh(Zy —éf)iisech(Zy —éé)].
v v v

(v)When & =0,b,=0,b, =1, a, :iZ\/E,é>O,thesolution (9) becomes

vy
¢ = \/E[tan(27\/gé) iSEC(Zy\/Eé)] :
y y y
A

(vi)When & =0,b,=0,b_ =i, a, :J_rZ\/E,—>O, the solution (9) becomes
vy

$=- é[<30t(27\/E§) T CSC(27\/E§)] :
y y y

For simplicity, in the rest of the paper, we consider &, =0.

3. Application to the variable-coefficient ZK(m, n, k) equation

3.1. Casel:l=n=k, m=n
Balancing the order of the nonlinear term (u™), with the term (u"),,, in (1), we obtain
mP+1=nP+3,
so that
P= 2 .
m-n

To get a closed form solution, it is natural to use the transformation
1
u=vmor,
and when | =n=Kk, Eqg. (1) becomes

n(m-n)°v?v, +a(t)m(m-n)?v®v,_+b(t)[n(2n—m)(3n-2m)(v,)* +

99

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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3n(2n—m)(m-n)w v, +n(m-n)>v’v_]+c(t)[n(2n—m)(3n-2m)v, (v) +

Ny +N(2n—m)(m—-n)w, v, +n(m-n)*v’v, J-a()(m-n)*v’ =0 (21)

This means that all the evolution terms that satisfy the condition | =n =Kk contribute to the soliton
formation.

In order to obtain new exact travelling wave solutions for Eq. (21), we use
v(x,y,) =v(£) . =B (D)x+B,()y — (D)t (22)
where B, (t), B,(t) and a(t) are functions in t to be determined later, and substituting the (22) into Eq.
(21), we obtain

n(m—n)°v?v, +a(t)m(m—n)®B,(t)v*v' + n(2n —m)(3n —2m)(v")’[b(t) B> (t)
+c(t)B, (t) 822 O]+ 3n(2n —m)(m—n)w'v'[b(t) B (t)+c(t)B,(t)B, 2]

2n(2n—m)(m—n)w

+n(m—-n)’v3v"[b(t) le (t)+c(t)B,(t) B2 ]-at)(m-n)’v® =0. (23)
Now, we assume that the solution of Eq. (23) can be expressed in the following form
N ) N .
V=v(&) =D a8 (6)+ D B,087(S), (24)
j=0 j=0

where N is positive integers which are given by the homogeneous balance principle, ¢(&) is a solution of

Eq. (3). Balancing v*v" term with V3V’ term in (23) gives N = 2. Therefore, we obtain
V=a,() + &, (O9(E) + a, O (E) + 2D L. @)
#(&) ¢ &)

Substituting Eq. (25) into (23) and using the Riccati equation (3), collecting the coefficients of ¢(&), we
have

ZIC 0+ C.OH(E)+Co04() +++ Cy (09 (D) + Cy 04" ()] =0, @)

Because the expresses to these coefficients D, C,(t)=0, C,(t)=0,C,(t)=0, C,(t)=0,
C,(t)=0, C,(t) =0 of ¢(&) in Eq. (26) are too lengthiness, so we omit them. But we can directly use the
command "solve" in mathematical software Maple to solve the following set of algebraic equations

C,(t)=0,C,(t)=0, C,(t)=0, C,(t)=0, ---, C,(t) =0, C,(t)=0. (27)

Solved the above algebraic equations, we obtain the following two sets of solutions

Case 1

B,(t)=B,, B,(t)=8,,
w® =2 " g ®)=0, a0 =1e " A1)=0, f1)=0,
olt) zz{_‘”‘V—zﬂoB; [[B20(0)+ B,2c() ot +C} ,

4,(m—n)
2
a(t) = _2n(m+n)y*[B, bm(tn)+ Bd 2c(t)] Azﬁ% 28)
A,(m—n)’e ERl &

where B,, B,, 4,, 4, and C are arbitrary constants.
Case 2
B,(t)=B,, B,(t)=B,,

M ICL: S GIOL
ay(t) = 14 Loy (1) =0, o, () =0, (1) =0, B,(t) = e ’
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_} _4n272ﬂ281 2 2
w(t) _t{ o j[Bl b(t) + B, c(t)}dtm},

oty =~ 20(M+ )74, [B, zb(t} :(ti A0) N %

v (29)
Hy *(m-n)’e "
where B,, B,, #,, 1, and C are arbitrary constants.

Thus from Eqgs. (25) and (28), (29) we obtain families of exact solutions to Eq. (23) as follows.

Vi T’ja(t)dt j ()dt¢ @), (30)
Ve e T2 et i eTJ’a(t)dtL (31)
: 2 5@

where ¢(&) is a solution of Eq. (3).

Substituting new solutions (8) and (9) of Riccati equation into solutions (30) and (31), using the
transformation (20), we have the following several families of solutions to Eq. (1).
Family 1

M0 ()t

Ul(X, y,t) {ﬂoe n .[ (t)dt—l—ﬂ,ze . y

,/ bleXp(y,/ §)+afle><p( 71/ —4)
: (32)
bleXpO/ ﬂ?g)""\/jexp( 4 _75)
4

where 5:51x+52y+12( %? j[ b(t) +B,’c(t) jdt-C,

a(t)=-

2n(m+n)y*[B, 2b(t) +B,%c(t)]
J'a(t)dt ’

l=n=k.

A,(m— n)en

If weset b =1, :J_r/ A:J_r/ <0|nEq (32), we obtain
v
J'a(t)dt M Jaat
= Ae " tanh?(y |- §) (33)
( Jeo e (y / g)} , (34)

1
Uy (X, ¥,1) = de n Ot e O cothz(ﬁ/‘%f)J (35)
2
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L
:(-Aoe”_jamdt csch?(y /—&f)j o (36)
4
Setting b, =i ,alzi\/gzi\/z,é:ﬁ>0 in Eq. (32), we get
Y H v A

Ul(g)(X, y,t) (ﬂoe n J. (t)t e%f“(t)dt tanz(y\/lgéf))nn -
( L PR \/7 J
A " sec’(y, [=2E) |, (38)
and
wﬂnmw[@e”(),mn““%wwf%aym @)
o, Ao ﬁ
= n — . 40
[%e csc (7\/25)} (40)
Family 2

(t)d T (tyd
uz(x’y,t) {ﬂoe n I a(t I+ﬂ2e n I t tx

- 72 ] m-n
b exp(y [-£2£)+ exp(—y [-£2¢)
0 M Hy
Hy (41)
Hop exp(y, |-£2&)+a exp(—y |-£2&)
0 Hy Ho
4n"y"11,B,

where & =B X+ Bzy+{,u0(m—n) j[ b(t)+ B, C(t)]dt C}
a(t) = - 20+ )y ﬂz[sz(t)+B c®]

l=n=k.
Ia(t)dt

Hy “(m-n)’e "
Family 3

Uy (X, y,t) = {ﬁoe R (t)dt+ﬂ7eTIa(t)dtx
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(7a\/LAb )exp(Zy\/ié)Jra +\/7b exp(-2y ——5)

(r ao + Abo )
4Ab

i
=3

(42)
exp(2y _;f) +by +b_ exp(-2y _;5)

2 2
where & =B X+ Bzy+%j[8fb(t) + Bzzc(t)}dt -C,

a(t) = - 2n(m+n)y® [sz(t)+B c(t)] A:ﬁ% len—k.

A, (m— n) ja(t)dt A,

Ifwesetb,=0,b, =1, a,=%2 /——_+2 / <0 in Eq. (42), we obtain
Uy, (X, y,t){Aoemnnjm(t)dt —ﬂoemf‘nja(t)d{coth(Zy /—%f)icsch(zy /—%5)} } 7

m-n

—ja(t)dt

= (43)
1¥ cosh(2y / 5)

Setting b, =0,b , =1, a, = +2\/——:J_r \/—i é:i<0inEq.(42),weget
y L v A

1
" nonr 2)mon
Uy (X, y,t)—{ﬂoe"I 0% _ e O {tanh(Zy/ /—%f)iisech(Zy —%5)} } R
2 2
Setting b, =0,b, =1, a, = +2\/7—+2\/7 —:—>O in Eq. (42), we have

-n 2] m-n
us(s)(x, y,t) = {ﬂoe n I ()dt+ﬂboe7jw(t)dt {tan(Zy\/%f)isec(Zy\/%f)} } . (45)
Setting b, =0,b , =1, a, = +2\/7 +2\/7 and — >O in Eq. (42), we have

u3(4)(x, y,t) = {ﬂoe n I a(t)dt ﬂoe?fa(t)dt [Cot(Zy\/%f)¢seC(2y\/j_7o§)} }mn
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J.a(t)dt
= (46)
1+ cos(Zy\/7§)
Family 4
a(t)dt MmN @t
u,(x,y,t)= {yoe ] + e " I X
1
B 72 | m-n
(20 A8 oy 0y ~28) by b2, -"9)
4Ab
(ya,” + Ab?) “n
“A" eXp(27\/ ——&)+a,+ \/ -—b, eXp(—27\/ -—<)
4y |-—b, Y Y 4
L 7 J
where &= Bx+B,y+ M][ B?b(t) + B,%c(t) Jdt - C
' ’ ﬂo(m_n)
2 2 2
a(t) :_Zn(m+n)7 luz[Bl :_(:)—'— BZ C(t)] ’ A:&]/, I =n= k
— | a(t)dt
Iuoz(m_n)ze n Ja Ho
: A u, A , :
Ifwesetby=0,b, =1, a,=%2 |-— ==£2 |-—= ,—=—2<0 in Eq. (47), we obtain
4 Hy V7V Hy
M0 ()t M0 (tydt 1 1
Uyy (X, Y, 1) =4 08 " / —H€ " j A
tanh(2y |-#2&) tisech(2y |-#2¢&)
Ho Hy
(48)
Setting b, =0,b , =1, a, = +2\/7 +2 /ﬂz — >0 in Eq. (47), we get
1
a(t)dt LY PTOOY 1
U4(2)(X, Yit)=q e " ol + e " J 2 (49)
{tan(Zy &cf)isec(Zy ﬂch)}
Hy Hy
3.2. Casell: m=n=k, l#n
Balancing the order of the nonlinear term (u'), with the term (u"),  in (1), we obtain
IP+1=nP+3, (50)
so that
o2 -
I—n
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To get a closed form solution, it is natural to use the transformation
u= vﬁ, (52)
and when m=n=k, Eq. (1) becomes
L(1 —n)*V®y, +a(t)n(l —n)*v?v_+b(t)[n(2n—1)(Bn—-21)(v,)* +
3n2n-1)(I-n)w,v, +n(l—n)*v?v, J+c(t)[n(2n-1)(Bn-2l)v, (v, )* +
2n(2n -1 —nw,yv,, +n2n-D(I —n)w,v,, +n(l —n)*v?v J-a(t)(I-n)*v* =0. (53)
This means that all the evolution terms that satisfy the condition m =n =Kk contribute to the soliton
formation.
In order to obtain new exact travelling wave solutions for Eq. (53), we use
v, y,) =v(8). &=B(t)x+B,(t)y-a(t)t. (54)
where B (t), B,(t) and w(t) are functions in t to be determined later, and substituting the (54) into Eq.
(53), we obtain
L(1 =n)*V®, + a(t)n(l —n)?B,(t)v?V' + n(2n—1)(3n - 21)(v')*[b(t) B, (t)
+C(1) B, (1) B,” ()] +3n(2n 1) (1 - n)wV"[b(t) B (t) +c(t) B, () B," (1)]

+n(l —n)*vv"[b(t) B31 (t)+c(t)B,(t) 822 O] -a(t)(I-n)’v* =0. (55)
Now, we assume that the solution of Eq. (55) can be expressed in the following form
N ) N )
v=v(§) =D o ()¢’ (6)+ D B¢ (S), (56)
j=0 j=0

where N is positive integers which are given by the homogeneous balance principle, ¢(&) is a solution of

m

term with vV term in (55) gives N = 2. Therefore, we obtain

V=%(t)+051(t)¢(§)+a2(t)¢2(§)+§1(_g))+522_((§t)).

Substituting Eq. (57) into (55) and using the Riccati equation (3), collecting the coefficients of ¢(&), we
have

Eq. (3). Balancing v°v

(67)

%[Co 0 +C,(OF(E) +C,(1)¢° () ++-++Cpr (187 () + Cys (9™ ()] = 0. (58)

Because the expresses to these coefficients D, C,(t)=0, C,(t)=0,C,(t)=0, C,(t)=0, ---,
C,;(t)=0, C,(t) =0 of ¢(&) in Eq. (58) are too lengthiness, so we omit them. But we can directly use the
command "solve" in mathematical software Maple to solve the following set of algebraic equations

C,(t)=0,C.(t)=0, C,(t)=0, C,(t)=0, ---, C,,(t) =0, C,(t)=0. (59)

Solved the above algebraic equations, we obtain the following two sets of solutions
Case 1
Bl(t) = Bl’ Bz(t) = Bz’

a,(t) = ﬂoe_TIa(t)dt ,a,()=0, a,(t) = g?e_TI“(‘)dt, B =0, B,(t)=0.
a)(t):l MI[B 2b(t)+B zc(t)ilenllj.a(t)dtdt_i_c
t| A,(-n) 1 2 ,
A B+ B, A
a('[)— /12(|—n)2 , A= 2'2 7, (60)

where B,, B,, 4,, 4, and C are arbitrary constants.
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Case 2
B,(t) =B, B ,(t) =B,

a,(t) = /uoe ! j ot Lo, (t)=0, a,(t) =0, ﬂl(t) 0, f,(t)= e’ J.a(t)dt,
2n(l +n) u,y*B, 2 O

,Uoz(l -n)?
2, 2rp 2 2
alt) = 4p,n"y7[B, b(t)"z' B, C(t)], A:&]/, (61)
Ho(I=1) o

where B,, B,, #,, 1, and C are arbitrary constants.
Thus from Egs. (57) and (60), (61) we obtain families of exact solutions to Eq. (55) as follows.

v=e et g e
Vs eTIa(t)dt i eTIa(t)dt 1 (63)
— M0 2 2 ’
9°(S)

where ¢(&) is a solution of Eq. (3).

Substituting new solutions (8) and (9) of Riccati equation into solutions (62) and (63), using the
transformation (52), we have the following several families of solutions to Eq. (1).

Family 5

A A -k
2 b, exp(y 3 &)+a, exp(-y ) $) | o

b, exp(y —j‘;m J‘T"exp( y —/125)
i 2

2 g
were =By By 2L 800+ 8o p 1ot

() M7 [B(Ib(t))+B c(®)]

Ifweset b =1, a —+\/j |- ﬁ <0 in Eq. (64), we obtain
e
Uy (X, Y1) = (ﬂo e ioeﬂ“‘”‘“ tanhZ(y‘/—%aJ ; (65)
(ﬂoe e " sech? (v / 5)} , (66)

m=n=k.

and
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and

Family 6

where & =B x+B,y—

Family 7

1

%me)[ O e T oty |- éﬂ“ (67)

[ e o " csch? (y / 5)} . (68)
- - j— A 2'0
Setting b, =i,a, =% /—7 = /—22 —=

InJ~ a(t)dt

Usigy (X, Y, 1) =

Us(ay (X, Y1) =

InJ-a

— > 0 in Eq. (64), we get

(t)dt
+

eT

- n

a(t)dt

I-n
—J.a(t)dt
A.e !

[ﬂoe  Jaton sec’(y \/7§)J : (70)

tan (7/\/7 g)J h (69)

1

cot?(y %f)Jn (72)

[ 767170 o, [Py |
(ioe csc (y\/zgf)j (72)

I-n
a(t)dt — | a(t)dt
Us (X, Y,1) = {ﬂoe e + e Jetost

b exp(y, [-£2£)+

Ho

_H

Ho

exp(—y

g
Hy

~ /—&bl exp(y
Ho

2n(l +n) w,y*B,

Ho

/Jo2 (I- n)
a(t) =

2y 1a exp(-y

g
Hy

#o (1=

n)’

(73)

2b(t) + B,%c(t) j(“olt—c
(B T

4,0°y*[Bb(t) + B, C(t)]

m=n=Kk.

Inp, [EYS
u, (X, y,t):{ﬂoe | ) (t)dt+/12e : | (t)dt><
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(2’ + Ay )exp(z —cf)+a0+f b, exp(-2y —*5)

' : (74)

2

(ra +Ab02) A _ _n
4Ab, eXp(ZV\/ y§)+bo+b—1eXp( 27\/ 7/5)

wre £ =By~ [ B e -

(t)_4/10n [sz(t)+BZC(t)] A:ﬁ% N

A,(1-
Ifwesetby=0,b, =1, a, —+2\/:—+2 - :—<O in Eq. (74), we obtain
\ &7 4
"—”ja(t)dt j a(t)dt I-n
Uy (X, Y, 1) =1 A€ ! coth(2y |- §)+csch(2y 5)

1
I-n

"T”.[a(t)dt

21,8

(75)
1¥ cosh(2y \/
4

Il
|
Ex
Py
j —
N—

SettingbO:O,bl:i,a0—+2\/—é:i2\/ &A i <0 in Eq. (74), we get
y L v A

1
Uy (%, Y1) = { e gt {ta nh(2y |- 22 Tozisech(zy —ﬁ@} } (76)
Setting b, =0,b , =1, a, —+2\/7 +2\/7 >O in Eq. (74), we have

1

Uy (X, Y1) = {%e s el_'*nj o {tan(Zy\/%f)isec(Zy\/Z 5)} } : (7
Setting b, =0,b , =1, a, :iZngiZ\/E,and é:£>0 in Eq. (74), we have
4 A roA

Uy (X, Y, 1) = {ﬂoe RECH I a {cot(Zy\/ifhsec(Zy\/if)} } ’

JIC email for contribution: editor@jic.org.uk



Journal of Information and Computing Science, Vol. 7 (2012) No. 2, pp 099-110 109

1
I-n

Do (tydt

I
U" . (78)
1ic0%2yJ7;§)
4
Family 8

I-n
(t)d el a(t)dt
Ug (X, y,t) = {ﬂoe e e / X

- arar

(7a02 + Aboz)
4Ab

2

(7&0 + Abo2

—)exp(27/ —é§)+a0+ —éb_lexp(—Zy —éf)
4 A Y V' 7 Y
v

i 4

A A
exp(2y —;f) + bo + b—l exp(-2y _;5)

(79)

-1

2
where & =Bx+B,y— 2n( :_(T)_ﬂ;;/z . j[ zb(t)-l- B, C(t)]e j. (t)dt -C,

alt) = 2,Ll2 2[B zb(t) +B 2C(t)] ’ A— /Uz

m=n=K.
o (1=
Ifwesetb,=0,b, =i, a,=+2 /———+2/ ﬂz A ﬂ2<0|nEq (79), we obtain

I-n I-n
LinlLy PR LinlLy PR 1
Ugeyy (X, Y, 1) =4 2458 ! j — 1,8 j

(80)

2
tanh(2y |-#2&) tisech(2y |-#2¢&)
Hy Hy
: A My A1 :
Setting b, =0,b, =1, a, =42 |—=%2 |—= ,—="2>0 in Eq. (79), we get
Y H 7 Hy

o J'a(t)dt N e"l—” a(t)dt 1
)

Ug(z) (X, Y, 1) =4 44 (81)

{tan(Zy &5) +sec(2y ”25)}

Ho Ho

4. Conclusions

In this paper, by using Exp-function method combined with F-expansion method, we studied the
ZK (m,n,k) equation with generalized evolution and time-dependent coefficients, eight families of exact
solutions of exp-function type are obtained. When the parameters are taken as special values, every family of
solution can be reduced to some solitary wave solutions and periodic wave solutions, the majority of these
results are very different to those in Ref. [14]. This shows that some solutions with different wave forms can
be expressed by the same one solution of exp-function type. From these abundant results, it is easy to know
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that the Exp-function method combined F-expansion method is useful to many nonlinear partial equations.
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