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1. Introduction, Definitions and Notations.

We denote by C the set of all finite complex numbers. Let f be a meromophic function and g be an
entire function defined on ©. We use the standard notations and definitions i the theory of entire and
meromorphic functions which are available in [6] and [3].

In the sequel we use the following notation:

log¥lx = log(log™*~¥x) fork = 1,2,3,... and

log®x=x;
exp®lx = explexp'*~x) fork =1,2,3,..and
explly =x.

The following definitions are well known.

Definition 1 The order p, and lower order +.+ of an entire function f are defined as

. loglPIM(r, ) .  loglfIM(r, )
P = limsup——————— and te = liminf—mm—m————
! F— -ogr : L .ogr
If  is meromorphic then
logT(r,f) c . JogT(n )
p. = limsup———— and te = liminf————.
d e .ogr : e wogr

Juneja, Kapoor and Bajpai [4] defined the (, g) th order and (', @) th lower order of an entire function f
respectively as follows:

x log® M(r, f) . log® ! M(r, )
p ip, q) = limsup—————— and (1. a) = liminf adFL
Prin 4 rez gt ¥ Q r— ogHtr

where p, g are positive integers and p > q.
When f is meromorphic, one can easily verify that
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: log?~17(r, £) | log=I7(r, )
Pelp.g) = msu:&—-—]— and  ig(p g) = liminf———7——,
" lo r log'e-r

where p, g are positive integers and p > g.

Ifp = 2andg = 1 then wewritep,(1,2) = Ps and 7,(1,2) = 4.

The followmg definiions are also well imown.
Definition 2 A meromotphic fimctiona = a(z) is called small with respect to £1if T{r, a) = 5(r.f) .
Definition 3 Letay, a-,....a, be line:arh' independent meromaorphic functions and Sﬂ:lﬂ]l with respact tof.

We denote by L{f) = W{ay, a=.... ag, [) the Wronskian determinant of a4, a-,....,ay, f 1.8
a4y Qs R T
ay a, -
L(f) =
af o¥ ... af f*

Definition 4 If o € C U {= ], the quantity
S(a: f) — Nenaif)
Sla;f) =1— htfl_:sun'r:r—f: = ]I"qllnf'j"r—l:'}
1s called the Nevanlima's deficiency of the value 'a’ .
From the second fimdamental theorem it fn]lnws that the set of vales of @ € CU {=] for which

Sla;f)»0 15  countable and Y 8la:f)+8(wf)=2 . [3] p43} I m

a=x
particular, ¥, &{a; f) + &= f) = 2, we say thatf has the maximum deficiency sum.
a=

mir.a; f)

ad

-

In the paper we establish some newly developed results based on the comparative growth properties of
mrupnsite entire or meromorphic functions and wronskians generated by one of the factors on the basis of
{p; g) th order and (p; ¢) th lower order where p, g are posifive infegers withp > g. We do not explain the
standard notations and definitions in the theory of entire and meromorphic funcions because those are
available in [6] and [3].

2. Lemmas.

In this section we present some lemmas which will be needed in the sequel
Lemma 1 [1] Let £ be meromorphic and g be entire then for all sufficiently large values of r,
T(r,feg) < {1+ .1} ';5 (M(r, g).f).
Lemma 2 [2] Let f be meromorphic and g be entire and suppuse that 0 <p<p, = co. Then for a sequence
of values of v tending to infimty,
T(r,f ¢ g) = T(exp(r*).f).

Lemma 3 [3] Let f be a transcendental me:rcmor[:ﬂ:lic function having the maximum deficiency sum Then

Ii &Y

= T 'r ATy ) : y .
*I-IEF—._,, 1+ k— kélee; f).
Lemma 4 If f be a transcendental meromorphic function with the maximum deficiency sum, then the(p, g)

th order and (p, g) th lower order of L{f) are same as those of f.
Proof. By Lemma 3,
. logl=UT(r, L(f))
% log®UT(r,f)
where p is any positive integer > 1 exists and 1s equal to 1. So

o logluT(r,L
prcs(p.g) = limsup
/ — log-aly
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. logP~UT(r ) loglr~UT(r,L(F))
:]]FLSEP log'alr Hm log®=UT(r, f)
= er-’.t},a) 1
=Pr (p.q).

Similarly it can be proved that
Minpa) =x(p.q).
This proves the lemma.

2. Theorems.

In this section we present the main results of the paper.
Theorem 1 Let f be a transcendental meromorphic function with the maximum deficiency sum and g be an
entire fimction such that p, (mmn) < Ag (p,q) = Pr (p,q) = oo where p, g, m,n are positive integers with
p = g,m =n Then

. lug[p‘ﬂﬂ:exp["‘ﬂnf o .E'J
W) hm logt? =T (expla—1lr, L(F))

=0ifg=m

and
. ]Ug[p_m_q_:]T[E}ip[”_ﬂ?",f - 5.:]
:ij) lim T [o—1] e
r—ow  log® " Tlexp ™ Hr, L{F))
Proof. Smce p, (m,n) < g (p,q) we can choose £(= 0) in such a way that

=0ifg=m,.

pgmm) +e<Apg)—¢ (1)
AsT(r, g) = log M{r g), we have from Lemma 1 for all sufficiently large values of +,
log® U (expl*~tr,fog) = ]cg[p‘ﬂTl: M(exp™1r,g),f) + 0(1)
i.e., log® T (explr=tr, £ e g) = (o (p,q) + )loglM(expl™~Ur, g) + 0(1). (2)
Now the following two cases mayv arise.
Case L Let g = m.
Then we have from (2) for all sufficiently large values of +,
log®~UT(expl=t fog) = (prlpq) + eNoglm=Up(exp=1r, g) + 0(1). (3)

0

Again for all SufﬁCIEﬂﬂ}" large values of ,
[ ml rfLegp[“ 1y gjl (Pg (m,n)+¢) ]Ug[ ]rsk:p[
ie., ]cng[ nl ‘fLexp[“ Uy g] = Lp (mn) + s] logr

1,

I1'v|'v|l— |

ie, loghM(explrr g) = - logr'Pe’

i.e., logl UM(explntlr,g) = rleglmnite) )
Now from (3} and (4) we have for all sufficiently large values of r,

log®~UT(expln~Ur,f o g) = (p;(p,q) +&)rlPa™ni*) 4 o(1). (5)

CaseIl. Letg < m.
Then for all sufficiently large values of v we get from (2) that
]Gg[p—ﬂ T[E}ip[”_ﬂ?‘;f o EJ

= {ps(p,q) + e)exp™=logIM (expl-1r, g) + 0(1). (&)

Again for all sufficiently large values of r,
]ug[ ml ) rfLexp[“ 1y gj p (m,n) + &) ]Ug[ ]r:—k:p[ Uy
ie., ]ug[-‘ ml ) rfLE!{p[“ Uy g] = LF‘,; (m,n) + E] logr

I1'v|'v|l— |

ie, logM(exp*Ur g) = log r'Ps’
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lmnalits]
ma s,

i e, exp[-‘-“-"'"-]]ng[-‘-‘ﬂ.-‘rfI:exp[”‘ﬂtr‘,g] = exp[-‘-“-"""-]]ug plPg'
i.e., explmalpghml .-‘rﬂ:exp[-“-‘ﬂngj = explm—a-1l plpglmni+z] (7
Now from (6) and (7) we have for all sufficiently large values of r,
log®~UT(expl*~1r, £ = g) = (pg(p,q) + eexplr=a-tplestmmiz=) 4 o(1)
i.e., log®PIT{expt=lr,f e g) = explm—a-A pleglmni+s) 4 g(1)
ie., ]Gg[p_-‘-"-_'?_:]TI:exp[’"-_ﬂfr',f C‘EJ = ]Gg[’“_ﬁ'_ﬂe}ip[m—ﬁ'_ﬂ pleglmmd+s) | o (1)
i.e., loglPtm=a-AT(explr-ly, 5 o g) = rlestmni+s) L (1), (8
Again for all sufficiently large values of v, we obtain in view of Lemma 4 that

s
=]

log®~UT(exple-tr () = Auiplpg) — &) loglelexpla-ily

ie, log® UT(exple-1lr () = (As(p,q) — £)logr

ie., ]ug[”‘ﬂﬂ:exp['?‘ﬂn L{f}) = ]Gg,_,,.'i-'ﬁ_."ip-q}—:;-

i.e., log®=AT(exple=tlr,L(F)) = rflpal-a ()
Now combming (5) of Case I and (9) we get for all sufficiently large values of + that

log® *T(exp™Yr,fog) (pslma)+ e)r'?s ™ 1 0(1)
]ug[;_:: T{exple—r, L{f)) = R '
Now in view of (1) it follows from (10 that
log® YT (expt=tr,fe g) B

(10)

msup ——p—r
r==log” “Tlexp"¥1rL{f))

]og[f”'_iz T(exp™2r,f o g) B

i.e., lim P - P
r== log® ~T(expl~1r,  L{f))

This proves the first part of the theorem.

Again combining (8) of Case ITand (9) we obtain for all sufficiently large values of + that

]gg[F_rﬁ_q_::T'::E}ip[r:_i:f"gf o 5'::' B ’.I‘I'Fi .rr'..r:.-—s'-' + (1)

]ng[F_:' Tlexple~Ur L(f1) priytpal—s)

(11)

Now in view of (1) it follows from (11) that
I--\.- -

log® ™ E T (explt~ly, fo g) B

limsup P — = P
rses log® = Tlexple=iy, L{f))

[+

log® "™ F T (expLr,fog)

ie, lim - P—
r==  log® “T(expla—lr, L{f))

This establishes the second part of the theorem.
Remark 1 The condition p, (m,n) =< s (p,q) in Theorem 1 is essential as we see in the following example.
Examplelletf = g = expzand p = m =2, g =n = 1.

Then p,(m,n) =i (p,q) = ps{p.q) =1and X &(a; f) +8{w=;f) =2

220
Takinga, =1,a,=...=a,=0andk = 1in Definition 3 we get that
e |1 expz|
Now
i . " - EX .
(2m3+)2
and

) . T
T(r,L(f)) = T(r, expz) = —.
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Then
]Gg[p—m—q—ﬂ?‘[e}{p[n—ﬂﬂf - EJ
lim

F—ron ]Gg[p_:]T(E}{p[q_ﬂT‘, L:f‘:,\J

. logT{r,feg)
r=s T(r,L(f))

r—%]ugr+0{:l}
= lim S

r—roo

= w=0, which is contrary to Theorem 1.
Theorem 2 Let f be a transcendental meromorphic function with the maximum deficiency sum and g be an
entire fimction such that A, (m,n) = e (p,q) = Pr {(p,q) =X oo where p, g, m,n are positive mtegers with
p = g,m =n Then
o ]Ug[p_ﬂT[E—Kp[”_ﬂT‘,}" E‘QJ
i) liminf

r=e logP~ AT (expla—ts L{ ) =0ifqzm

and
)
u) hﬂﬂlf log P~ 2T (expla-tlr, L(F))
Proof. For a sequence of values of v tending to infinity that
logt M (expl™~tr, g) = (3, (m,n) + £) logMexpl=—1yr
ie, ]Ug[-‘-“J.-‘rﬂ:exp[”'ﬂr, J = Lfg (m,n) + EJ logr
)

=0ifg <m.

[Fglmml+z)

i.e., log™M(exp*1r g) = logr

i.e., logim UM (explr—1lr, g) = rlAglmnl+e) (12)
Now from (3) and (12) we have for a sequence of values of + tending to infinity that

logl~UT(expim=Ur,f o g) = (ps(p.q) + &)rPetmni®=l 4 p(1). (13)

Combining (9} and (13) we get for a sequence of values of + tending to infinitv that

log® U T(exp™tr, fog) (pspal+ g)riatmm+el 4 (1) i
= . I\ .'I

(Aelpgl—s)
7

]ug["*'_:: Tlexpls—r, L{F)) - r

Now in view of (1) it follows from (14) that
]Gg[”_ﬂ?—liexp[”_ﬂ?ﬂf o EJ
liminf m—2177 Tg—1] ey Q.
r—e logF S Tiexp ™ Hr, L))

This proves the first part of the theorem.

Apgain for a sequence of values of  tending to infinity that
logl™I M (expl*~1r, g) = (3, (m,n) + £) logtexpl 11y
ie., ]Gg["'“J.-‘ri'I:exp[”_ﬂﬁgj = I:}g (m,n) + EJ logr
i.e, logmM(expl—tr g) = log rliglmn)+e)

i.e, exp[-‘-‘"-_'?]]cg[-‘-“-].-‘rf[exp["_i]r,gJ = exp[-‘-“-_”-]]og rl
ie., exp™ eloglM(expl~tr, g) = explm—a-1] rliglmnl+s) (13)
Now from (6) and (15) we have for a sequence of values of » tending to infinity that
log®~UT(exp™Ur, f e g) = (p;(p,q) + &explm-a—tl pl2stmmiza) 4 o(q)
i.e., log®P1T(explt=Ur,f o g) < explm-a-2A plaglmal+al 4 (1)
i.e., loglP*m=a-2AT(explr=ly fog) = loglm-a-Aexplm—a-2plglmnizz) L g(1)

Aglmmlts)

ie., ]Gg[”_’"_q_ﬂTl:exp[”_ﬂﬂf o QJ = pliglmml+s) o(1). (16)

Combming (9) and (16) we obtain for a sequence of values of + tending to infinity that
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p+m—g—2] T(exp™Yr,feg) rligimnl+<l 4 0(1)
]Gg[; - T(expla—1r,L{)) = 1,-«'::' \lpal—=s)
Now in view of (1) it follows from (17) that
o ]Gg[-'-’_-'"_':-'_:]Tl:exp["_ﬂ'nf' - EJ
liminf

roe log P AT (exple—Ur L(F))
This establishes the second part of the theorem.

log

(17)

=0

Remark 2 The condition?,(m,n) < A;(p,q) in Theorem 2 is necessary which is evident from the
following example.

Example2 Letf = g = expzand p = m =2, g =n = 1.
Then A,(m,n) =2 (p, @) =ps(p.g) =1and ¥ &(a; f) +8(w=;f) =2

2=

Takingny =1, a,=..=a,=0andk = 1 in Definition 3 we obtain that
o |1 expz|
Lif) = e s
Now
B . . . X
(r,f eg) = T(r expl¥z)~ i) 7 (r = )
(2m3r)2
and
P, . .
T(r, L(f)) = T{r, expz) =—.
Therefore

) ]Ug[.'—’_-‘-"’_q_:]T[EKP[H_ﬂﬂf C-E:l
im )
7 log AT (exple U L(1))

. logTlr,feg)
]lm,—_.\
re T(r, L(f))
r—%]ugr+D{:l}
= lim =

F—+o0

Al

= w=0, which is contrary to Theorem 2.
Theorem 3 Let 7 be a wanscendental meromorphic function such that py(p,g) <o and
¥ &la;f) + 8= ) = 2 where p, g are positive mtegers with p = g = 1. Also let g be entire. If
axm

Arag(p,q)= oo then for every positive number a.
_ log®UT(r,f o g)
L log®UT(r% L(F))
Proof. Let us suppose that the conclusion of the theorem does not hold. Then we can find a constant § == 0
such that for a sequence of values of r tending to infinity
log®—UT(r, fe g) = BlogP~UT(rs L)) (18)
Again forg > 1 from the definition of py(s)(p. @) it follows that for all sufficiently large values of
and in view of Lemma 4

log? U, L) = (prip(p.q) + loghel(r®)
ie., log? UT(r=L(f)) = (ps(p.q) + &)loglelr+ 0(1) (19)
Thus from (18) and (19) we have for a sequence of values of + tending to infinitv that
log®~UT(r, fo g) = Alp;(p.q) + £)logldlr+ 0(1)
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log?~UT(r,f e g) _ Blpslpgl + gloglelr+ 0(1)
loglelr = logle'r
o log? T f e g)
i.e., liminf 1]
r—oo logeir
This is a contradiction.
This proves the theorem.

ie,

- g ™ P
= Areg\Piq) = 0

Remark 3 Theorem 3 is also valid with "limit superior” instead of "limit" if A, ,(p, )= is replaced by
Preg {p,g)= and the other conditions remaming the same.
Corollary 1 Under the assumptions of Eemark 3,
limsup ]ug[-'-"ﬂ:]i".:;:r,f Eg} = o
e log®P=AT(r= L{F))
Proof. From Remark 3 we obtam for all sufficiently large values of r and for K = 1
log?~UT(r, o g) > Klog? UT(r% L{f))

ie., logP=AT(r feg) > logP~AT(r=L{FNIX,
from which the corollary follows.

Corollary 2 Under the same conditions of Theorem 3if g = 1
i L8P UTC o)
row log®-UT(r% L(F))
Corollary 3 Under the same conditions of Remark 3 if g = 1
lim sup log > 7(r, © g) =
v ]ug[-'-"ﬂ T(r=L{f))
Remark 4 The condition . ;(p, 1)= % in Corollary 2 is necessary as we see in the following example.

Example3Tetf =expz, g = zand p = 2, g = 1, a0 = L

Then Pr :'P’: l:' = -"'t_f:g :’.th l:' =1.
Also ¥ 8(a;f) +8(=;f) = 2.

lirf=ta sl
Takingay; =1,a,=...=a,=0andk = 1in Defmition 3 we obtain that
ra |1 expz|
Lif) = ‘D expz| = EXPE.
Now
. . . A
Tir, feg)=Tlrexpz) = -
Then

log®~UT(r,f = g)
r—z log P~ UT(r= L{F))
I - )]
r=z=  logTi{r, f)

7
log—

= lim ~
"> log—

= 1=0o, whichis contrary 1o Corollary 2.

Remark 5 Considering f = expz, g = zandp = 2,4 = 1, o« = 1 one can easily verify that the
condition p. (p, 1)== in Corollary 3 is essential.

Theorem 4 Let f be a transcendental meromorphic function with the maximum deficiency sum such that
0 < 2:{p.q) = pslpg) < oo Alsolet g be an entire finction . Then
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(i) limsu log# T (r.f © g) —m ifg=1
Y P g T e,y T
log? UT(r,feg)  w'iipq)

(ii) limsu - =~ > ——— ifg=2
e 1ogP T (exp (), L(F)) ~ pps (p,9) ra
and
. log®UT(r,f ¢ g) g
{ii) limsup = ifg=1

roee log? UT(exp(r#), L(F))  pslpq)
where 0 <<y < p'< p,and p, g are positive integers withp > g.
Proof. Since 0 <y < u'< p,then from Lemma 2 we get for a sequence of values of r tending to mfmity
that
log?~UT(r, f = g) = log®~IT(exp(r+'), f)
i.e., log® UT(r,f o g) = (4 (p, @) — )logllexp(r+')
ie, logP~UTr(r,fog) = I:J-‘f (p.q) — s)]ug["-'ﬂlir“:). (20)
Again from the definition of pys(p,g) and in view of Lemma 4 it follows for all sufficiently large
values of r that
log?~UT(exp (r*), L(F)) = (puip (0 q) + &)log!¥exp(r#)
ie., logP UT{exp (r#),L(F)) < (prlpq) + £)logle—tpx, (21)
Thus from (20) and (21) we have for a sequence of values of  tending to mfmity that
log® UT(r,feg) _ (3 (v, q) — £)logla=1(r¥)
log®~UT (exp(r#),L{f)) = I:pf (p,q) + Ejlng[”-‘ﬂr“ :

[
[
et

Sincep = u', the theorem follows from (22).
Remark 6 The condition: =< p, in Theorem 4 is essential as we see in the following example.
ExampledIetf = g = expzand p = m =2, g =n = 1. Alsoletp =1

Then A+ (p,q) = ps(p.q) = landp, = 1. Also ¥ &{a; f) +8(w=;f) =2,

2=

Takingay =1.a,=..=a,=0andk = 1 in Definition 3 we obtam that
co |1 expz|
Now
i ) r A EXEN .
(2r3r)z
and
e

M__,
I

T{exp (r*),L{f)) = T{expr, expz
Therefore

; log® T (r, 1 o g)
P 0g® T (exp(r#), L(F))
logT(r, expl?z)
= limsup— S
rooe 1 LEXPT, Expz)

r— %lugr + 0(1)

= ]ir.nsrup T+ 00D

= 1=+0, which is contrary to Theorem 4.

Theorem 5 Let [ be a transcendental meromorphic function with the maximum deficiency sum. Also let g
be entire such that 0 = A, (pq) = Pr (p,q) < co and Pg {(m,n) = oo where p, g, m,n are positive mtegers
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withp = g,m = n. Then

() limsu log®!T(exp™tr,fog)  pglm,m)
) P ST T (expla—Tp L(F)) — o)

ifg=m
and
. ]Ug[p_m_q_i]Tl:E}c:p[”_ﬂT‘,f ':'J_?j _Pg (m,n)
Y ]]?EEP log?~ UT{(exple—tr, L(F)) = Ae(p. q)
Proof. In view of Lemma 4 we have for all sufficiently large values of v
]ng[:"_i]TI:E‘{p[“_ﬂ*l‘ Lf':lj > (Ag 2 '-.’F}JQ:' _ E}]Gg[”] E‘»{p[q_ﬂf
i.e., log® T (expla-tr, 1(F)) = (3 (p.q) — £)logr. (23)
Case L If g = m then from (5) and (23) we get for all sufficiently large values of » that
]ng[?-’]TI:exp[”‘ﬂtr‘,f c-g] _ I:pg {m,n) + E)]Gg“r + 0(1)
log?~HUT (exple—ty, L)) = IZJaf (p,q) — s]]ug’r
. . log®IT (expl=r, f = g) _pgmm)+e
b B ]]?EEP logP~UT(expla-ts, L{F)) = Aelpg)—¢&

ifg<m,

Sinces (> 0) is arbitrarv, it follows from above that
]Dg[p]T[E‘{p[”_ﬂ"“f o QJ '111 11:1

=

log?~UT (exple—ly, L(F)) A(p.g)
This proves the first part of the theorem.
Case II. If ¢ <2 m then from (8) and (23) we obtain for all sufficiently large values of r that
logie*m-a-T (expln=tr, £ o g) Lp (m,n) + ¢)logr + 0(1)
log? I (expe IrL(F) (A (pq) —)logr
. . logle*m=a-Ur(expn-1ly, £ o g) _pglmn) + ¢
b8 ]]ﬁilp log?~HT{exple—tr, L(F)) = Aelpg) —¢

limsup
y—oo

As g (= 0) 1s arbitrary, it follows from above that

; logE*m=a-1T(expln=1ly, f o g} _pglm,m)
]HLSEP logP~UT(expla-tr L(r)) Ar(pq)

Remark 7 The condition p,(m,n) < o> in Theorem 5 is necessary which is evident from the following
example.

Example SLetf =expz, g =expllzamd p =m =2, g =n = 1L
Then A;(p,q) = ps(p.g) = landp,{m,n) = co. Also ¥ &(a;f) +d{w=;f) = 2.

o=
Takingay =1, a-=..=a,=0and ¥ = 1 in Definition 3 we obtain that
1 expz
L(f) = 0 expz = gxp=z .
Now

) R S .
T(r, f gl = E]Dg;rf [Ejf o EJ
. "r" - -
i.e., log®T(r,feg) = logBlM (.—Jf =g )+0(1)
i.e., logiT(r,fe g) = logB ]expm[ )+ 0(1)

ie, loglT(r, feg) i[ 'I+G' 1)

and
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. ) § ' .
logT{r, L{f)) = logT{r, expz) = log (:;I = logr + O{1).
Therefore

; ]DEL_u—m—q—'lJT[EKpL"!—UTJ}F o QJ o ]cg[ﬂT:*‘,f ':J_?:'
el T logP T (expleTr, L(F)) v’ logl(r L(F))

]Ug[p_"-"’_q_ﬂT[E}{p[n_ﬂ?",f c-gj §+ 0 :l:'
e, i _ ——— =i o
S ]Ei}:lp ]Clg[-"’_ﬂ?_l__exp[q_ﬂ?“,ﬂ (F)) ]?ls,_}:lp logr+ 011}

. ; ]Ug[-ﬂ_m_q_ﬂT[E}ip["_ﬂ‘.“',f C‘E] _
€., P log® UT(exple-UrL(f) -

which is contrary to Theorem 5.
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