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Abstract. If ( )f x  is a differentiable convex function and its Heissen matrix is positive semi-definite,we 

can prove the inequality * 1( ) ( ) ( ) ( ( ) ( ))
2

T Tx x f x x x f x f x− ∇ ≥ − − ∇ −∇ . 

Meet the above inequality from the general convex function of the convergence card sequence of functions 
on the measurable set.  
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1. Introduction  
let ( )f x  be a differentiable convex function，and ( )f x∇  be the gradient of the function. x∗  is the only 

optimal value point，which makes ( ) 0f x∗∇ = .Then to any x  and x ， if H  is positive semi-definite, 

  
* 1( ) ( ) ( ) ( ( ) ( ))

2
T Tx x f x x x f x f x− ∇ ≥ − − ∇ −∇                       （1） 

(see [11],[12],[13],[14],[15],[16],[17])，but if ( )f x  only be a differentiable convex function we can get 
weaker inequality(see [18],[19]),can we get the inequality to any convex function? 

2. Some properties 
Conclusion 1：Let H  be positive semi-definite.Then we have 

1 ( ) ( )
2

T Ta Hb a b H a b≥ − − −  

Proof： ( ) ( )Ta b H a b− −  

( , ( ))
( , ) ( , ) ( , ) ( , )
a b H a b
a Ha b Ha a Hb b Hb

= − −
= − − +

 

since H  is positive semi-definite and ( , ) ( , )a Hb b Ha= ， 

we have 
1( , ) ( , ( ))
2

a Hb a b H a b≥ − − − 。 

Conclusion 2: assume that ( )f x  is differentiable on nR ，then ( )f x  convex if and only if    

( ) ( ) ( ) ( )Tf y f x f x y x− ≥ ∇ − 。 

Proof：if ( )f x  is convex，then 

)()()1())1(( yfxfyxf θθθθ +−≤+− ，
nRyx ∈∈ ,,],1,0[θ  

So we have 
θ

θ )())(()()( xfxyxfxfyf −−+
≥−  

letting +→ 0θ ，we get )()()()( xfxyxfyf T ∇−≥− . 
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Conversely if 
1( ) ,
2

T T Tf x x Hx c x H H= + =  and H  is semi-definite，the conclusion is obviously. 

Theorem 1. Let 
1( ) ,
2

T T Tf x x Hx c x H H= + =  and H  be positive semi-ddefinite，Then we have 

* 1( ) ( ) ( ) ( ( ) ( ))
2

T Tx x f x x x f x f x− ∇ ≥ − − ∇ −∇                        （2） 

Proof: note that in this case ( )f x Hx c∇ = +  and thus the equivalent of（2）is 

      * 1( ) ( ) ( ) ( )
2

T Tx x Hx c x x H x x− + ≥ − − −                                            （3） 

By using 0Hx c∗ + = ， we have  * *( ) {( ) ( )} 0Tx x Hx c H x x− + − − = and consequently  

* * *( ) ( ) ( ) ( )T Tx x Hx c x x H x x− + = − −  

Since H  is positive semi-definite ,we can get the conclusion .  
For a general convex function ，weaker than (1) the conclusion is clearly established. 

Theorem 2.Let ( )f x : nR R→  be convex and differentiable. Then we have  

*( ) ( ) ( ) ( ( ) ( )).T Tx x f x x x f x f x− ∇ ≥ − − ∇ −∇ (see [15],[16])                          （4） 

Proof：since ( )f x  is convex and differentiable,we have 

            ).()()()( ** xfxxxfxf T∇−+≥                                                   （5） 

Since *x  is the minimum point， *).()~( xfxf ≥ Therefore,it follows from (5)that 

    )~()()()( * xfxfxfxx T −≥∇−                                                    （6） 

Since f  is convex， )~()~()~()( xxxfxfxf T −∇≥−  Using (5) (6) we have: 

)~()~()()~( xfxxxfxx TT ∇−≥∇−                                                   （7） 

Adding )()~( xfxx T∇−  to the both sides of (7),we get 

))()~(()~()(*)~( xfxfxxxfxx TT ∇−∇−≥∇− . 

For general convex function ,can conclude that (1). 

3. The main result 
Conclusion 3: )(μpL  is a complete metric space， that is to say any cauchy sequence of the )(μpL  
converges to an element of the )(μpL . 

Theorem 3: If ,1 ∞≤≤ p and if }{ nf  is a Cauchy sequence in )(μpL ，with  limit f ,then }{ nf  has a 
subsequence which converges pointwise almost everywhere to )(xf . 

According to Theorem 3(see [20]),for a differentiable convex function )(xf ， nRx∈ ,can always find a 
Cauchy sequence }{ nf  of )(μpL  .By the conclusion of Theorem 3 shows that a subsequence }{

inf  can 

always be found in the above Cauchy sequence ,which converge to )(xf .
inf is a differentiable convex 

function and meets T
nn

T
n

T
n iiii

HHxcxHxxf =+= ,
2
1)( , among which,

inH is positive semi-definite. 
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