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Abstract. The sinc-collocation method is presented for solving second-order boundary
value problems of nonlinear integro-differential equation. The method is effective for
approximation in the case of the presenceof end-point singularities. Some properties of the
sinc-collocation method required for our subsequent development are given and are
utilized to reduce the computation of solution of the second-order boundary value
problems of nonlinear integro-differential equation to some algebraic equations. Some
numerical results are also given to demonstrate the validity and applicability of the
presented technique.
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1. Introduction

Boundary value problems for integro-differential equations are important because they have many
applications in the study of physical, biological and chemical phenomena [1]. Liz and Nieto [2], study a two
point boundary value problem for a nonlinear second order integro-differential equation of Fredholm type by
using upper and lower solutions. In [1], an iterative method is presented to solve a class of boundary value
problems for second-order integro-differential equation in the reproducing kernel space. For linear and
nonlinear second order Fredholm integro-differential equations, semiorthogonal spline wavelets was
developed in [3] and Chebyshev finite difference method was discussed in [4]. Also in [5], Saadatmandi and
Dehghan applied the Legendre polynomials for the solution of the linear Fredholm integro-differential-
difference equation of high order.

In this paper, a sinc-collocation procedure is developed for the numerical solution second-order
boundary value problems of nonlinear integro-differential equation of the form:

w' () + p)' () + q(e)ule) + iij key (x, (B dt + ,tzj ey (x, Du(Bde = flxul), (1)
« r

x,tel=[abl, ula)=a  ulb)=4,
where the parameters A1, 42 the kemnels k, (x, ﬂ': kz":x:fl the functions P(*), q(x) are given and

fFlx,u(x)) is nonlinear in u(x}: where ¥(*) is the unknown function to be determined. There has been a
great deal of research work on the existence of solutions for boundary value problems, for instance see [6, 7.
8].

Sinc methods have increasingly been recognized as powerful tools for problems in applied physics and
engineering [9, 10]. The sinc-collocation method is a simple method with high accuracy for solving a large
variety of nonlinear problems. In Reference [11], the sinc-collocation method is presented for solving
boundary value problems for nonlinear third-order differential equations. Authors of [12], used the sinc-
collocation method for solving a nonlinear system of second-order boundary value problems. Mohsen and
El-Gamel [13], used the sinc-collocation method for solving the linear integro-differential equations of the
Fredholm type. Also in [14], the sinc-collocation is presented for solving linear and nonlinear Volterra
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integral and integro-differential equations. In [15, 16], the sinc-collocation is used for the numerical solution
Fredholm and Volterra integro-differential equations. Also sinc-collocation method is used for solving of a
system of nonlinear second-order integro-differential equations with boundary conditions of the Fredholm
and Volterra types [17]. We also refer the interested reader to [18, 19, 20, 21, 22, 23] for more research
works on sinc methods.

The main purpose of the present paper is to develop methods for numerical solution of the second-order
boundary value problems of nonlinear integro-differential equation (1). Our method consists of reducing the
solution of (1) to a set of algebraic equations. The properties of sinc function are then utilized to evaluate the
unknown coefficients. The organization of the rest of this article is as follows. In Section 2, we review some
of the main properties of sinc function that are necessary for our subsequent development. In Section 3, we
illustrate how the sinc method may be used to replace Eq. (1) by an explicit system of nonlinear algebraic
equations. Section 4, presents appropriate techniques to treat no homogeneous boundary conditions. In
Section 5, some numerical results are given to clarify the method.

2. Sinc function properties

Sinc finction properties are discussed thoroughly in [9, 10]. In this section an overview of the
formulation of the sinc finction required for our subsequent development is presented. The sinc finction is

defmed on the whole real lme, =22 = & <X 92, by

sin{mx) _;
Sinc(x) = {—m » xF0, (2)
1 s x=0

For any it = 0 the translated sinc finctions with evenly spaced nodes are given by
. sin[E (x—jh}]
50,800 = sene(2I0) VTR xe
yh)(x) = Sinec|— = : (x — jh)
1 ,  x=jh

jh

(3)

which are called the jth sinc functions. The sinc function form for the interpolating point Xx = kR is given
by

, 1, j=k
U is defined on the real line, then for it = 0 the series
== _ -h
Ca, h)(x) = E w(fR)Sinc (x hj ) (5)

_;':—cu:

is called the Wittaker cardinal expansion of U, whenever this series converges [9.10]. But in practice we
need to use some specific numbers of terms in the above series, such as/ = —N,...,N, where N is the
number of sinc grid points. They are based in the infinite strip Ps in the complex plane

Dsz{w=u+ iv:lvlc‘:dﬂ’g}. (6)
To constnict an approximation on the interval (@ B)_ we consider the conformal map
z—a
(z) = Ln(b — z]. )]
The map carries the eve-shaped region
z—a T
DE={ZE1E:|arg(b_z)|=‘:d£E}. (8)

For the sinc method, the basis functions on the mterval (@ B) for Z € Dg are derived from the composite
translated sinc functions,
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5(j, h)od(z) = Sinc (&h_ﬂl). (9)
The function
z=¢ 1w = %E::J (10)

is an inverse mapping of W = @(z). We define the range of ™" on the real line as
r={¢1(u) € Dg:—c0 < u < o0} (11)
The sinc grid points % € (ab) in Dewill be denoted by ¥ibecause they are real. For the evenly spaced
nodes ﬁh}}':—*x on the real line, the image which corresponds to these nodes is denoted by
— 1) = a-+ bel®
=9 C1+eit
For further explanation of the procedure, the important class of functions is denoted b}'Lu(DE}_ The

properties of functions in Lo(Dg) and detailed discussions are given in [9, 10]. We recall the following
definitions and theorems for our purpose.

Definition 1. Let La(Pg) be the set of all analytic fimctions, for which there exists a constant, €, such that

lp(2)|*
|H(Z:]|| = EWJ ZE DE, 0<a=1, (13}

j=0,%+1,+2,.. (12)

where P(2) = e®#)
Theorem 1. Let % € La(Dg), 1ot Nbe a positive integer, and let A be selected by the formula

wd\*?
oo (8 :
N (14)
then there exists positive constant €1, independent of N, such that
N
sup|ulz) — Z u{zj—}S (jh)og(z)| = cie":“d”""'f-:'”z. (15)
=zl
=N

€ L,(D
Theorem 2. Let ¢-“ al E} et N be a positive integer and let t be selected by the formula (14), then there

exist Pc:smve constant €z, 1ndependent of N, such that

ju(z}dz h Z :(;k}}

D (1)
La(Dg), with@ >0, mdd >0, let %% be defined as

-0 _1 j"‘isin(m}d
1]

¢, e~ (mdan)? (16)

Theorem 3. Let d"

6. ==
ki 2" mt '
- (ﬂ_d:]i.-"z
and let \aw Then there exists a constant €3, whldl is independent of N, such
Tk PR T1F-4 . ;
j u(t)dt—h Z sy ,{ ) = ¢y e (mdaN) V2 17
i L %% 9z

We also require derivatives of composite sinc funcunns evaliated at the nodes. The Mth derivative (%) at

some points ¥J can be approximated using a finite number nf terms as

u™(x;) = A" Z 5 u(x,), (18)

i=—N
where

s = — s, h)og(x)]

. 19
i - (19)
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In particular o
s =sGmosel| _ ={y  iZ7 (20)
‘o . i=]
5. = h.—[S(z Rod(x)]| ={(-1y* .y (21)
*=x j—i’ '
and e
s = [5(; h)og(x)] 3 = (22)
i d¢2 ! —2(-1)y™ .
oG

3. The sinc-collocation method

Let us consider the nonlinear equation (1), with homogeneous boundary conditions. We assume ul(x) 1o
be the exact solution of the boundary valie problem (1) and let™ € Lo(Dg).We consider the Whittaker
cardinal expansion (5). The series in relation (5) contains an infinite number of terms. Let N be a positive

integer, then function u(X) defined over the interval [@ P is approximated by using a finite number of terms
in (3) as

ulx) = Z u;5(i, h)ogp(x), (23)

i=—N
where ¥; = u(x;) and @(x) is defmed by (7). We consider the equation (1), and let
g(x) = fxulx),
then

w" () + plw' () + qle)ule) + Ay r ke (x, D)t + azj ko Cx, D) dt = glx), (24)

By using Eq. (23) we have

N
W@ Y [5G mop(o]

1——!«-
u () = Z 0 [5G, o (ol
i=—N
Note that
2 [5(, Wod)] = ¢' (D~ [5(i, od(H)]
it ofp(x)] = ¢ xﬁ i, )og(x)],
and
2
15600 = () Az ISGmopCe]+ (¢ () A5G oo
Having substituted * = X;for § = —N....,N, where X; are sinc grid points given m (12), and by using
relations (4), (19}, we have
N
' (%) ~ Z u ' hEL (25)

i=—N

and
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N
uw' x_;'} & Z Uy (‘:‘:’;h_iﬁgji}"' {‘Pij}zh_zﬁg})‘ (26)

i=—N

where @'; = @' (x;), ¢': = @' (x;).

k[u:_.
ue L D i=1,2, —
We suppose that ¢ «(De) "by applying Theorems 2, 3 and setting ® = ¥i*we obmin
*
j ky (%, E)u(B)dt ~ h Z 2 50y (27)
&
i=—N
and
j ko (x;, t)u(t)de ~ z” (28)
1——;'0
where K1ii = k1 (x5, 8:) . ezjs = ke '[xju £;).
By using relations (25-28), and substinting * x}'! f =N, .s N e can rewrite (”'4} as
N 6' (1) IZ:I 6'?1}
rr lj { } ‘1 h i_l_. I i:l
+1@; hz u; + p; -:,1!'.~J1 u; +qju; + 44 i W
i=—-N i=—N - 1——.'0
+A,h Z 2 = g, (29)
1——h
where 97 = f{xi’ul'}’ ford = =N, .. N, with Drdermg the up formula, we have .
1 (z 1j.0 | 1
Z{'i} +pj¢1}61_;}1t1+hzz{¢_i} 61_;}1"‘14_"1} +‘11hz — }
1——h i=—N - i=—N
k;,
j u; = gj. (30}
] i=—N
where f = =N, ..., N. %e now rewrite this system which is the nonlinear system of equations in matrix form.
Comresponding to a given function u(x) defned on I , we wuse the nomtion

D(w) = diag(ulx_y),..., ulxy)), K; = [kI(ijtE}JJ =12 _4ji=-N ..,N.

(m) — [ 5tm) = (1m) - (
We set ) [Sii ]’ m 1,12 ' where 513 denotes the (i, J)th element of the matrix 7 ‘m}= and since
(0) _ (0} g 1} My 02y _ (2
8 =88, =—6.6"7 =857,
We can simplify the svstem (30) in the matrix AU G vwhere
1
A= —2[D($") + D@D(@UD + 5 D(@)2ID +Dlg) + Ay (f' 9p(; )) oK,

+mafin(2)]

U = [u(-x—h'}.l u(x—_.'\l'+1}.l "-Ju(xﬁ—i}.lu('xﬁ}]r.l
G =[glx_n), g(x_ns+1), ., 9(xn—1), g(xx)]T.
The notation '@~ denotes the Hadamard matrix multiplication. The above nonlinear system consists of

N
2N + 1 equations with 2N + 1 ynknown coefficients {uidi=—n. Solving this nonlinear svstem by the well
known Newton's method. Consequently u(x) given m (23) can be calculated.

3. Treatment of boundary conditions

In the previous section the development of the sinc-collocation techmique for homogeneous boundary
conditions provided a practical approach, since the sinc functions composed with the various confonmal

maps, S5(i,h)od(x), are zero at the endpomts of the mterval If the boundarv conditions are
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nonhomogeneous, then these conditions need be converted to homogeneous conditions via an interpolation
by a known function. Using the transformation

P x—a

y(x}=u(x}—z:aﬂr—b_aﬂ (31)

to the problem (1), vields the equation ;
Y+ Gy )+ a0y + 2y [ kaC Dyt + 2, [[Rae Oyt = Fxy),  (32)

r
xe€l=[ab], yla=0  yb=0
where
- _ b—x x—a ﬁ'—a) (h—x x—a )
Fxy@) =f (0y@+ p—a+5—o8)~p@) (o) 4@ (aa+5—o8
Ark( t}(b_t e )dt Ajk( t}(b_t e )dt
1u 1 X, b—ﬂ.a b—ﬂ.ﬁ. 2z 21X, b—ﬂ,a b—ﬂ.ﬁ. '
r
Table 1: Comparison absolute error (%) for Example 1
Exact Method of [1] Present method
X solution N=20 N=25
0.08 0.00588172 4,6259x 1075 5.3868 x10°° 2.8293 x 10°°
0.16 0.0214124 4.81776x 1073 1.8045 x107° 8.9730x 10°°
0.32 0.0684497 4,16744x 1075 7.6048 x10°% 7.3063 x 10°°
0.48 0.11526 3.48007 x 10°5 1.6378 x107° 1.2008x 1075
0.64 0.137594 2.96533x 1073 3.1392 x10°% 8.7603 x 10°°
0.80 0.114777 2.69251x 10°% 7.9223 x10°% 4,9231x10°°
0.96 0.031457 2.39306x 10°% 3.7492 x 1077 1.0128x 10°°

3. Illustrative Examples

We applied the method presented in this paper and solved some examples. We also compare our method

with introduced in [1, 24]. It is shown that the sinc-collocation method vields better results. The solutions of
i T

the given examples are obtained for @=3 o 2 and for different vahies of V. Let ¥ (x), 2'(x) denote the
exact solutions of the given examples, and let uy ()1 y (%) be the computed solutions by our method. Let
I'=[a,b]l 3nd ® a conformal map onto D, where $(x) is defined by (7). We use the absolute emors,
defmed as
Ey(x) = luy(x) — u(x)], E'y(x) = |u'y(x) —u'(x)], a<x=<bh.
So the numerical technique described in previous sections was applied to the following examples:
Example 1: Consider the singular boundary value problem [1]

") + L) + Lul) jx( yuod j O
u 1+Eu x+;ux+ ! t+xwt)dt+ utxut t_1+sin(uz(x}}

_eu'?(x:' + uii(x} = _f(xl 0=<x=<1, (33}
where w(0) = u(1) =0 34
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flx) = 1 ({Zx."§+ x—4dx\x—x2)cosx +(1—Vx—2x — 2xJx+ xzx."i}sinx)
v

‘x

+2'[1— 4x—x? +x3}cusx+ '[6+ 3x— sz}sinx— (Z+4cos1— 5sinl)x

1

- 1+ sin({(x —x2) sinx}z)

. . . —_ _ Z -
for which the exact solution is u(x) = (x — x*)sinx.

Table 2: Comparson absolute emror u'(x) for Example 1

_ E[':x—xzj Si“"‘.}v + ({x — xz}sinx)ii +2(x—1),

157

(34)

Exact Method of [1] Present method
X solution
N=25 N=30
0.08 0.140493 1.26577 x 1075 1.2953 x 107# 3.0105x 107%
0.16 0.24102 6.05795x 1075 7.7563 x 10°% 6.0314x 1075
0.32 0.319798 4.45588x 10°° 8.1110 x 10°° 2.7979x 10°°
0.48 0.239865 3.8886 x 1075 6.3109 x 105 1.7409 % 10°%
0.64 0.0175881 2.52869x 105 4.6633 x 105 3.9654x 10°%
0.80 —0.318941 7.07368x 107> 7.6312 %1075 3.4064x 1075
0.96 —0.731633 4.60855x 107> 2.6826 x 1075 3.2563x 107°
Table 3: Comparison absolute error (%) for Example 2
Method of [24] Present method

> N =10 N =15

0.1 3.95622x 1073 1.0641 %1072 1.3982x 1073

0.2 6.01293 x 1073 9.6044 x1073 2.0176x 1073

0.3 6.00105x 1073 3.2104 x 1073 1.5292x 1073

0.4 6.35575x 1073 1.1736 x 1072 1.0231x 1073

0.5 7.02651x 1073 1.2435x 1072 1.3113x 1073

0.6 6.70261x 1073 1.1736 x 1072 1.0231x 1073

0.7 6.44357 x 1073 3.2104 x 1073 1.5292x 1073

0.8 6.40303 x 10732 9.6044 x 1073 2.0176x 1073

0.9 4.33703 x 1073 1.0641 x 1072 1.3982x 1073
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Table 1. presents the absolute error ¥(X)_ for N = 20and N = 25, using the present method at the same
points as [1], together with the results given in [1]. Also Table 2, presents the absohite error u'(x) for
N =25 and N = 30, ysing the present method at the same points as [1]. together with the results obtained

by given m [1].

Example 2: In this example we consider the nonlinear second-order differential equation [24],

u'"(x) —u?(x) = 2n? cos(2mx) — sin*(mx),

with the boundarv conditions

u(0) =0,

0=x=1

The exact solution of this problem isu(x) = sin’(7wx) Taple 3, presents the absolute values of emors for
N =10 3pd N = 15, by using the present method at the same points as [24].

Example 3: We consider the second-order boundary value problem of volterra integro- differential equation

x

1 .
u'(x) + T2 + xe®(®) + j xtu(t)dt = f(x), D=x=1,

0

u(0) =1,
where
1 7 .‘.\:‘3
_ 1422 z
f(x}—2+1+(1+xz}z+xe +4{2+x }

The true solntien js #(x) = 1 + 22,

We solve this problem, for NV = 15 and N = 30_ The absolute errors are tabulated in Table 4.

Table 4: Results for Example 3

X Eys E3g

0.05 1.9141 x 1075 8.0853 x 1078
0.15 3.4870 x10°% 4.1152 x 1078
0.25 1.8463 x 1075 4.0552 x 10710
0.35 6.5224 x 107% 5.0559 x 1078
0.45 1.6167 x 107% 2.6244 x 1078
0.55 1.9012 x 107% 2.5612 x 1078
0.65 7.2555 x 107% 5.1438 x 1078
0.75 1.9338 x 1075 1.3473 x 10710
0.85 2.7679 x 107% 4.1907 x 1078
0.95 1.9517 x 1075 8.1172 x 1078
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Example 4: Consider the second-order boundary value problem of fredholm integro- differential equation
1

1 : .
——u'(x) + ——ulx) + j e u(Odt = u? (x) + 3e7 + flx),
Vi+x x—1 -1

with the boundary conditionstt(—1) =0, u(1) =0,

u'(x) +

2x z
flx)=2+ +x+1—4ev - (x2—-1) —3e %41,

where Vx +

with exact solution Wx) =X — 1. We splve equation for N =15 and N =25 The absolute errors are
tabulated in Table 5.

3. Conclusion

The sinc-collocation method is used to solve the second-order boundary value problemsof nonlinear integro-
differential equation. Properties of the sinc function are utilized to reduce the computation of this problem to
some algebraic equations. The method is computationally attractive and applications are demonstrated
through illustrative examples. The results of the present method for this type of problem clearly indicate that
our methods is accurate even when singularity occurs at the boundary.

Table 5: Results for Example 4

x E;c E3s
—0.95 4.6482 x107* 1.2347 x107%
—0.75 7.4734 x 1075 5.4515x 1077
—0.55 2.0712 x 1075 8.5048 x 1077
—0.35 3.5332 x 1075 1.6112 x 1077
—-0.15 6.3807 x 1075 1.5565 x 107¢
0.05 3.6695 x 1075 9.5408 x 1077
0.25 5.5576 x 107° 3.7185 x 1077
0.45 6.7451 x 1075 1.5479 x 107%
0.65 1.9001 x 1075 1.3849 x 107
0.85 5.9382 x107° 9.9596 x 1072
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