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Abstract.  The main purpose of this article is to present an approximate solution for the one dimensional 
wave equation subject to an integral conservation condition in terms of second kind Chebyshev polynomials. 
The operational matrices of integration and derivation are introduced and utilized to reduce the wave 
equation and the conditions into the matrix equations which correspond to a system of linear algebraic 
equations with unknown Chebyshev coefficients. Finally, some examples are presented to illustrate the 
applicability of the method.  
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1. Introduction  
Hyperbolic partial differential equations with an integral condition serve as models in many branches of 

physics and technology. There are many papers that deal with the numerical solution of the parabolic 
equation with integral conditions [1, 4, 5, 6, 7, 11, 13]. The present work focuses on the one-dimensional 
wave equation with the non-local boundary condition. 
In this paper, we consider the following one-dimensional wave equation 
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where F , 1f , 2f ,  1g  and 2g  are known functions. 
The existence and uniqueness of the solution of the problem (1)--(5) are discussed in [3]. Dehghan [8] 

presented finite difference schemes for the numerical solution of problem (1)--(5). In [15] the shifted 
Legendre Tau technique was developed for the solution of the studied model. Author of [2] developed a 
numerical technique based on an integro- differential equation and local interpolating functions for solving 
the one-dimensional wave equation subject to a non-local conservation condition and suitably prescribed 
initial-boundary conditions. Authors of [14] combined finite difference and spectral methods to solve the 
one-dimensional wave equation with an integral condition. In [9] variational iteration method was applied for 
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solving the wave equation subject to an integral conservation condition. Authors of [10] presented a 
meshless method for numerical solution of problem (1)--(5). Also in [16] the method of lines was developed 
for the solution of the discussed problem. 

Orthogonal functions have been used to solve various problems. The main characteristic of this 
technique is that it reduces problem to those of solving a system of algebraic equations thus greatly 
simplifying the problem. In the present paper, the numerical solution of the problem (1)--(5) is computed by 
using two variable shifted second kind Chebyshev orthogonal functions. 

The paper is organized as follows: In Section 2, basic properties of the second kind Chebyshev 
polynomials are presented. In Section 3, we discuss how to approximate functions in terms of second kind 
Chebyshev polynomials and introduce operational matrices of integration and derivation. In section 4, we 
give an approximate solution for (1)--(5). Numerical examples are given in Section 5 to illustrate the 
accuracy of our method. Finally, concluding remarks are given in Section 6. 

2. Properties of the Second Kind Chebyshev Polynomials 
Second kind Chebyshev polynomials are total orthogonal basis for  1,12 L  and can be determined with 

the aid of the following recursive formula [12]. 
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For the case that the interval is not 1,1][  , say ],[ ba , we can use the linear transformation 
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to transform the domain into 1,1][ . 

The orthogonality property is as follows: 
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where 21=)( tt   is the weight function. 
Some properties of the second kind Chebyshev polynomials are as follows: 
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3. Function Approximation 

3.1. Approximation of one-variable and two-variable functions 
A function )( ty  defined over ][0,T  may be expanded by the shifted second kind Chebyshev functions 

as 
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where 
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If the infinite series in (10) is truncated, then (10) can be written as 
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Similarly, a function ),( txh  defined over ][0,][0, T  may be expanded by the shifted second kind 
Chebyshev functions as 
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so that 
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If the infinite series in (13) is truncated, then it can be written as: 
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In order to calculate the integral part of (11) and (14) we transform the intervals ][0,  and ][0,T  into the 
interval 1,1][   by means of the transformations 
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T

txx
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and then use the second kind Gauss-Chebyshev quadrature formula [12]. 
 

3.2. Operational matrix of integration 
Using equation (7) the integration of the vector ),( tx  defined in equation (15) in direction t  can be 

approximated by 

 ),,(),(
0
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t
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such that P  is an 1)1)((1)1)((  nmnm   matrix as follows: 
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where O  is zero matrix with dimension 1n  and 
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3.3. Operational matrix of derivation 
By the definition of ),( txij  we have 
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So that, 1M , 2M , 3M  and 4M  are respectively I , O , I3  and O , for odd m and O  , I2 , O  and I4 , 
for even m . I  and O  are identity and zero matrix with dimension 1n  respectively. 
Similarly we have 
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4. Numerical Solution of the Wave Equation 

4.1. Matrix form of the wave equation  
We approximate ),( txu  and ),( txF  in equation (1) respectively as 

 ),,(),( txAtxu T  (18) 
 ),,(),( txFtxF T  (19) 

such that 
 ,],,,,,,,,,,,,[= 101111000100

T
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where ija , mi ,0,1,=  , nj ,0,1,=   are unknown second kind Chebyshev coefficients and ),( tx is 
as (15) and m  and n  are chosen positive integers. 

Twice integrating equation (1) from 0  to t  and using equations (2), (3), (16)--(19) we have 
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Substituting equations (21) and (22) into equation (20) we get 
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so that W  is an 1)1)((1)1)((  nmnm  matrix and V  is an 11)1)((  nm  vector as follows: 
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4.2. Matrix form of the Direchlet boundary condition 
The Dirichlet boundary condition (4) can be written as 
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Using equation (9) we obtain 

 ),(1)(1)(=1)2(1)(=)(0, tit
T

UUt j
i

jiij    

therefore 
 ),(=)(0, 1 tWAtA TTT   (25) 

where )( t  is as (12) and 1W  is an 1)1)((1)(  nmn  matrix as 
  .1)(1)(32=1 ImIIIW m    

and I  is identity matrix with dimension 1n . 
We approximate )(1 tg  as 

 ).(=)( 11 tGtg T  (26) 
Now, using equations (24)--(26), the matrix representation of the boundary condition can be written as 

 .= 11 GAW  (27) 

4.3. Matrix form of the non-local condition 
By using equation (18) the non-local condition (5) can be written as 
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We approximate )(2 tg  as 
 ).(=)( 22 tGtg T  (30) 

Using equations (28)--(30), we obtain the matrix representation of the non-local condition as 
 .= 22 GAW  (31) 

4.4. Method of solution 
To obtain the solution of equation (1) under the conditions (2)--(5), we replace 1)2( n  rows of the 

augmented matrix ];[ VW  with the rows of the augmented matrices ];[ 11 GW  and ];[ 22 GW . In this way, 
the second kind shifted Chebyshev polynomials coefficients are determined by solving the new linear 
algebraic system. 
 

5. Illustrative Examples  
In this section, two examples are given to demonstrate the applicability and accuracy of our method. In 

order to demonstrate the error of the method we introduce the notation: 
 |,),(),(=|),( ,, txutxutxe nmnm   

where ),( txu  is the exact solution and ),(, txu nm  is the computed result with m  and n . 
Example 5.1. Consider (1)--(5) with 1=l , 1=T  and [10] 
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for which the exact solution of this problem is )(sin)
2

(exp=),( xttxu 
. 

We applied the presented method in this paper for this problem with different values of m  and n . In 
Table 1 we give the error 

2,nmuu  , for 5=n  and 108,6,4,2,=m . From Table 1 we see that for fixed 
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n as m  is increased the error decreases. Also the error function ,1)(, xe nm  for different values of m  and n  
is shown in Fig. 1. 
 

Table 1. Values of 
2,nmuu   for 5=n  and some values  of m  for Example 5.1. 

  m  2  4  6  8  
 

2,nmuu   2104.463   4107.39   6106.649   8105.338   
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Fig. 1:  Graph of the ,1)(, xe nm  with 108,6,4,== nm  for Example 5.1. 

Example 5.2. In this example, consider (1)–(5) with 1=l , 0.25=T  and [9] 
 0.25,<<01,<<00,=),( txtxF  
 1,<<00,=)(),(cos=)( 21 xxfxxf   

 0.25.<<00,=)(),(cos=)( 21 ttgttg   
The exact solution of this problem is )(cos)(cos=),( txtxu  . We applied the presented method in 

this paper with nm=  and show some numerical results in Table 2 and Fig. 2. From Table 2 we see that the 
approximate solution computed by different values of m  and n  converges to the exact solution. 

Table 2. Values of  
2,nmuu   with nm =  for Example 5.2. 

  nm=  2  4  6  8  
 

2,nmuu   2105.479   3102.062   5104.377   7103.302   

 

6. Conclusion  

In this article we presented a numerical scheme for solving the second-order wave equation subject to 
an integral condition. Properties of the second kind Chebyshev polynomials were employed. The matrices   
and   have many zeroes, hence making second kind Chebyshev functions computationally very attractive. 
Chebyshev coefficients of the solution are found very easily by using the computer programs without any 
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computational effort and this process is very fast. The new described method doesn't need any collocation 
point and produces very accuracy results. 

 

 

  
Fig. 2:  Graph of the ),(, txe nm  with 108,6,4,== nm  for Example 5.2. 
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