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Abstract. This paper studies the effect of parameter mismatch on the dual-lag synchronization of a class
of coupled chaotic systems. Based on the Lyapunov stability theory, a new definition for global dual lag
quasi-synchronization is introduced and used to analyze the synchronous behavior of coupled chaotic
systems in the presence of parameter mismatch. Numerical simulations on the Ikeda oscillator are presented
to verify the theoretical results
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1. Introduction

Chaos synchronization, which was firstly introduced by Pecora and Carrols [1], has attracted increased
interest for the applications of secure communications and spread spectrum communications. For chaotic
communication systems, it would also be of great interest to exploit the property of multiplexing chaotic
signals in one communication channel. In 1996, Tsimring and Sushchik [2] investigated multiplexing chaos
synchronization in a simple map and an electronic circuit model for the first time. Then in 2000 Liu and
Davids raised the concept of “dual synchronization", which refers to using a scale signal to simultaneously
synchronize two different pairs of chaotic oscillator (two masters and two slaves) [3].

Many studies on dual synchronization of chaotic systems have been reported. For example, Ref. [4]
considered the dual synchronization in Colpitts electronic oscillators. Ref.[S] studied the dual
synchronization of the Lorenz and the R ¢ ssler systems. Dual and cross dual synchronization of chaotic
external cavity laser diodes were investigated in [6]. In[7] experimental and numerical dual synchronization
of chaos in two pairs of one-way coupled microchip lasers using only one transmission channel were studied.
Dual synchronization in modulated time delay system using delay feedback controller was proposed in [8].
Based on Lyapunov stability theory, a general method to achieve the dual-anticipating, dual, dual-lag
synchronization of time-delayed chaotic systems was suggested.

It is well known that parameter mismatch is inevitable in practical implementations of chaos
synchronization because of noise or other artificial factors. In certain cases parameter mismatches are
detrimental to the synchronization quality: in the case of small parameter mismatches the synchronization
error does not decay to zero with time, but can show small fluctuations about zero or even a non-zero mean
value; larger values of parameter mismatches can result in the loss of synchronization [9].

Recently, there are some reports on chaos synchronization in the presence of parameter mismatch. In
Ref. [10] the authors investigated the robustness of the synchronization with respect to parameter
mismatches or noise. In Ref. [11], the authors studied the synchronization between two nonidentical
unidirectionally linearly coupled chaotic systems with time delay and showed that parameter mismatch is of
crucial importance in achieving synchronization. The effect of parameter mismatch on lag synchronization of
chaotic systems was studied in Ref. [12]. Ref. [9] considered the effect of parameter mismatch on
anticipating synchronization of chaotic systems with time delay in the framework of the master-slave
configuration. However, to the best of our knowledge, only a few studies have addressed the effects of
parameter mismatches on dual lag synchronization theoretically.

In this paper, we present theoretical analysis and numerical simulations of the parameter-mismatch
effect on dual lag quasi-synchronization for a class of coupled chaotic systems. A new definition for global
dual lag quasi-synchronization is introduced and a global dual lag synchronization error bound together with
a sufficient condition is derived. Numerical simulations on the Ikeda oscillator are presented to verify the
theoretical results

The rest part of the paper is organized as follows: In the next section, the problem to be studied is
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formulated and some preliminaries are presented. In Sec. 3, a sufficient condition for dual lag quasi-
synchronization in the presence of parameter mismatch is derived. An illustrating example is then given in
Sec. 4, and some conclusions are finally drawn in Sec. 5.

2. Problem formulation and preliminaries
Consider a class of delay chaotic system as
x1(8) = Ax, + B, f (x,(1 —1,(1))), (1)
where x,(¢) € R" is the state vector, 4, is an nXn symmetric matrix, B, is an nxn matrix, f : R" e R" is
a nonlinear function with f(0) =0. t,(¢) is the delay time of the feedback loop, where 0 <1 (¢) < 1,.

Many chaotic systems with delays are of the form of (1), for example the Ikeda oscillator [13], the
Mackey-Glass oscillator [14], the Vallee system [15], etc.
We take another system with parameter mismatch from (1) as

.).;](t) =4,y + Bzf(yl (¢ -1, ()))s (2)
where y,(¢) € R" is the state vector, 4, is an nxn symmetric matrix and B, is an nXn matrix. T,(¢) is

the delay time of the feedback loop, where 0 <1,(¢) <1, .
By using a combination of systems (1) and (2), we have the following drive system:

{ )'c](l‘) = Alxl +B]f(x1 (t_rl (t)))"' Clg(yl (t_rz(t))),
.).;l(t) = Azyl +Bzf(y1 (t_rz(t)))"' ng(xl (t_Tl ),

where C,,C, are nxn matrices, g:R" — R" is a nonlinear function with g(0)=0.

3)

To synchronize system (3) using feedback control in the framework of the drive-response configuration,
we design the response system as:

{ x2() = A% + Buf (5, =1, (D)) + Cg (1, (t =1, (1)) + K (x, (£ = (1)) = 3 (1)),
Y2(0) = 42y, + Bof (1, (1 =1, () + Cag (%, (1 = 1, (1)) + K(x, (£ = 1)) = ¥, (1)),

where x, € R",y, € R" are the response states, T(¢) is coupling delay which is bounded and K is the

“4)

coupling strength.
Ref.[8] investigated the dual lag synchronization between systems (3) and (4) with

A4 =4=-a,B=p=-"b,4=4,=-0,8=B,=b,G=C,=b.,C,=C,=bh,8(x)=f(%),

and t(t)=71,, where 1T, is a constant. In this paper, we focus on the case of
A # 4,8 #B,C, #Cpi=12. Weuse Ad = 4,—A,AB =B,—B,AC =C,-C,i=12,

to denote the parameter mismatch errors, and let e,(¢) = x,(t) — x,(t —1(¢)),e,(t) = y,(t) — y,(t —1(¢)) be

the synchronization errors between the states of drive system (3) and response system (4). By subtracting
Eq.(3) from Eq. (4), we obtain the following error system:

el(t) = 4 () + B\Lf (x,(t = 1,(0) — f (x,(t =7, (t) = 1(1)))]

+Cilg, (1 =1, (1)) = g (1 (1 = 1, (1) = W(D))] + Adyx, (£ = (1))

+AB, f (%, (1 =7,(1) = (1) + AC g (y, (1 = 1,(1) = 1(1)))

A, (2 =1(@)) + B f (x,(t =1, (1) = 1(1) + C.g (3, (£ = 1, (1) = w()))]F (1) — Ke, (2),
ex(t) = 4:,() + Bol f (0, (t = 1,(0) = f (1 (£ = 1, () = 1(1)))]

+Calg(x, (1 =7,(1)) = g(x, (1 =1, () = 1))+ Ady y, (1 = 1(2))

+AB, f (= 1,(1)) = 1)) + AC, g (x, (1 — 7, (1) = ©(1)))

Ay, (=) + B, f (0 (¢ = 1,(0) = 1)) + Cog (x, (= 7,(1) = 1())]E (1) — ke, (2).

(5)
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It is easy to observe that e(t) = (e’ (¢),el (¢))" =0 is not an equilibrium point of system (5), which means

that dual-lag synchronization is impossible. Therefore, we study the dual-lag quasi-synchronization between
systems (3) and (4). First of all, we present the definition of dual-lag quasi-synchronization.
Definition. For the drive system (3) and the response system (4), it is said that system (3) and (4) are

dual lag quasi-synchronized with error bound ¢ if there exists a 7 > ¢, such that || x,( —t(¢))—»,(®) ||< €,

|| x,(t—=1(¢))—y,(t)||<€ forall t>T .

Before give our main results, we introduce two Lemmas which are needed in the proof of the main
theorem.

Lemma 1. Let t, = max{t,(¢)},t, = max{t,(¢)},T = max{t,,7,},t €[0,00). Suppose that function
x(¢) is non-negative when ¢ € [—T,0) and satisfies the following inequality:
xX(t) < —kyx () + kx(t—7,(8) + kyx(t — 1, (1)) +a,
where o, k,,k, , and k, are nonnegative constants, and k, >k, +k,. Then

x(t) <|| x(0) | ¢ +%, £>0, ©)

where || x(0) ||= max | x(s)| and 7 is the unique positive solution of
-1<s<0

—r=—k,+ke™ +ke™.
Proof: Let y(7) =|| x(0)|| e +<,£>0. From (6), we need only to prove that x(¢) < y(), > 0. Assume it
is not true, then there must be a positive number #, such that
x(t) < y(0), t<t,
x(t,) = y(t,),t = 1,
x(to) _J.’(to) 2 0.
Note that
x(ty) < —kox(ty) + kyx(t, —7,(2,)) + b, x(8, = 7,(1,)) +
=~k (1)) + kx(t, — 7, (1)) + k,x(t, —1,(5,)) +
<—koy(to) + ki y(t, =1, (8)) + ko y (8, — T, (8,)) + @

-ty O —rlh=1lh a —r(lh=12(fp a
=~k (1x(O)fe™ + )+ k(| x(0) ][ e ( (’))+;)+k2(||x(0)||e ( (”+;)+a

+—k0+k, +k, o

r

=—k, || x(0)|| e +k || x(0) || e ) 4 k|| x(0) ]| e oD +a
0 1 2

< (ko + ™ + ke ™) || x(0) [l
(=kotherm+hkyer ) (0)je
==rp(0)le-o=y(%,),
we have X(¢,) < y(t,), which is in contrast with X(¢,)— y(#,) = 0. Therefore, one gets x(¢) < y(¢),£=0

and the proof of lemma 1 is completed .
Remark 1. Lemma 1 is the extension of that presented in Ref.[12].

Lemma 2 (Ref. 13). For any vectors x,y € R" and positive-definite matrix Q € R"™", the following
matrix inequality holds:

2x"y<x"Ox+y"07'y.
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Throughout this paper, we assume that / and g:R" — R" are Lipschitz continuous, i.e. there exist

positive constants L, and L, such that for all x,y€R"
/) =SS Ly [ x=yILIgx) =g L, [ x =yl

9

3. Criterion for dual lag quasi-synchronization in the presence of parameter
mismatch

Now, we are in a position to give our main theorem which provides a criterion for dual lag quasi-
synchronization of the chaotic systems (3) and (4) with parameter mismatch.

Theorem 1.  Suppose that Q ={x eR"||x|<0,} , Q,={yeRkR"||y|<n,}
and | A4, [[o+[|AB, [ L,0,+[|AC, || Lo, <p,, (| 4, [Jo+|| B, [ Lo, +] C || L,o,)t< v,
| A4, || @, +[[AB, | L;0,+[|AC, || Lo, < p,, ([ 4, [[@,+]| B, || L,0,+ || C, || L,®,)T < v,. Also, suppose
there exists a symmetric and positive-definite matrix P >0, and positive scalars o,,B,,7,,9,,K;, (i=1,2),
and K, such that the following conditions hold:

(1) P4,+4P+a,PB B P+B,PC,CIP+v,P*+8P -K,P<0,

(2) P4,+ 4,P+a,PB,B,P+B,PC,CoP+v,P*+8,P°—K,P<0,

3) a;]L§I+B;]LZI -K,P<0,

4) By L] +a,' L] - K,P<0,

(5) 2K-K,-K,-K,>0.

12, sl 2 12 a1 2
Vi W+ Vi +Ya ma+d; V)

Then the dual lag quasi-synchronization with error bound €+ between the systems (3
A (PP Y

and (4) is achieved, where € is any arbitrary small positive number and 7 is the unique positive solution of
equation —r =K, —2K + K,e™ + K,e"™.
Proof. Construct the following Lyapunov function:
V(e(t)) = e (t)Pe (1) +e; (1)Pe, (1),
where e(t) = (] (t),e; (¢))". Differentiating ¥ (e(t)) with respect to ¢ along the trajectory of error system
(5) yields
V(6)=2e,()" P{Ae(t)+B\Lf 6, (1 =1,(0) = f (x,(t = 7,(t) = 2(1)))]
+Cilg (1 =1, (1)) = g (1, (2 =1, (1) = 1))+ Adx, (£ = (1))
+AB, f(x,(t = 1,(1) = () + AC g (y, (£ =7, (1) = (1))
+[A4x,(t =)+ B, f (x,(t =7, (1) = v(1) + Cog (1 = 1, (1) = ()7 (1) — Key (1) }( 7D
+26,(0)" PUI, 0+ BoLf (1 (1= 1,(0) — £ (0, (t = 1,(1) = (1))]
+ éz[g(xz (1- T (1)) - g(xl (1— T (1) —t())]+ AAzyl (1—1(1))
+AB, £ (3,(t = 1,(t) ~ (0))) + AC,g (x, (¢ — 1,(1) (1))
F[ Ay, (= 1(0) + B, f (3, (=1, (0) = 1(0)) + Cog (x, (1 =1, ()~ W(e))]E (1) — Key (1)}

In view of Lemma 2, we have

2¢,()PBLf (x,(t =1, () = f (x,(t = 7,(t) = W(1))] < o, ()P B, B  Pe, (t)

o, [ (6, (=1, (D) = f (5 (=7, () = TN [f (6, (=1, () = f (6, (=1, (1) = (2)))]
=,/ (OPBBiPe () +a," || f(x,(t=1,(0) = f (x,(t = 7,(6) = (1)) |

<a.el ()P, B Pe (+o; Lzl (t=1,(1)e, (11, (1),
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2¢,(NPC g1, (1= 1,(1) — g, (1=, (1) — W) < B ()PC\CPe, ()
B, g0, (t =T, () = g, (1 = T, () = TN [ (v, (t =T, () = g1, (1 =T, (1) = T(1)))]
=Bief (VPC\CiPe(t)+B, [[[g(r, (=1, (1)) — gy, (t =1, (1) =] |
<Biel (DPC,C1Pe(D+B Loef (1-1,(1))e, (1=1, (1)),
2e,()P[A4x, (1 =o(1)) + AB, f(x, (1 =7, (1) = 1)) + AC g (¥, ( = 7, (1) — ©(1)))]
<ye (P, (1) +7," || Adx, (¢ = 1(0) + AB, £ (x,(t = 7,(1) = (1)) + AC,g (1, ( = T, (1) = (1)) |
<y,6 ()P ()+y; ' (A4l HIAB|L oy +HAG|L 0, )
<y,el () Pe (t)+y;'1,
2e,()PLAx, (1 =1(1)) + B, f (x,(t = 7,(t) = 1(1))) + g (v, (t = 7, (1) = (1)) |7 (1)]
<3¢/ ()P’e,(t)+56,'(| 4 || o+ B, || Lo+ G | Lg®2)2T2
<d.el' (t)P?e (t)+0;'v2.
Similary, we can derive the following inequalities:
2¢,()PBALS (0, (1=, ()~ f (1 (=1, () = U))] £ 0,€, (VP B, B:Pe, (1) +05 L€ (2 =1, (£))e, (t =1, (1)),
2e,(1)PCA(x, (t=1,(1)) ~ g (5, (t =1, ()~ WO < B} (VPTLCaPey (1) +B; Lol (1, (0))e, (1~ 1, (1)),
2e,(1)PIAA,, (t = T() + AB, f (3, (t = T, (1) = 1(1)) + AC, g (x,( = 1, (1) = ()] S v,65 (P, (1) + 75 s,

2e,(OPLA,,(t = 2(1) + B, f (3,1 = 1,(0) = W) + Cog (3, (1 = ,(0) = TO)IEW] < 8,5 () PPe, (1) + 55V
Substituting these into Eq.(7) yields
V() <e() P4+ 4P +,PBBIP+B,PC,CIP+Y,P’+3,P —K,Ple ()

+e,()'[P4,+ 4,P+0,PB,B3P+B,PC,CsP +7,P* +3,P* — K,Ple,(t)
+e (t-1, (t))(a]“Li,I + B;‘Lz,l — K, P)e,(t—1,(2))
+e, (t—1,(O)PB; L] + 0, LT — K, Pe, (1 —1,(1))
+(K, —2K)e, ()" Pe,(t)+(K, —2K)e, (1) Pe,(t)+ K¢/ (t —1,(¢))Pe,(t —1,(t))
+ K, €, (1= 1,(0) Pey(t =T, (1) + (v, 'y +8,'v] +7,'13 +8,'v3)

S(K, 2KV (e(t)+ KV (e(t—1,(t)) + K,V (e(t —1,(2)))
+ (7 B 8V Y, M +8,Y))

=(K, -2K)V (e(t))+ KV (e(t —1,(1)))+ K,V (et — 1,(2))) + 0,

where o=y, 'u +8,'v: +v; 'l +8,'v3.
By Lemma 1, we have

V(e) <V (e0)) || +%, £>0,

where 7 is the unique positive solution of —r = K, —2K + K¢’ + K,e"™. Note that
L(P) | e®) IP<V(e(1)),
where A, (P) is the minimal eigenvalue of  matrix P, one gets

A, (P)|le(t)|P<|V (e(0))]|e ™ + WSV 8 Y Accordingly, we obtain

”

12 12 12 sl 2
|| e(t) ||S \/m(n V(e(O)) H e 4 Ik +3 v :«/2 13 +8; VZ)

1y 121572 4y 12 155002
< 1 Ve e ¥ 4 [ st
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Obviously, \/#P) 1V (e(0))||e* — 0 as £ — +oo. Thus for any arbitrary small positive number ¢, there

-1.2 =12 -1.2 g-1.2
is a positive T such that for any t> T, || e(?)||< 8+\/ e v ,Z)Zr””bz “2, Therefore, the dual lag quasi-

¥+ Ve 413 3 +85 ')
Ay (P)r

synchronization occurs between system (3) and system (4) with error bound € +\/ for any

arbitrary small positive number €. This completes the proof.
Remark 2. It is clear that if the parameter mismatch vanishes and 1(¢) is constant, then the dual-lag

synchronization will occur.
Remark 3. The first two conditions in Theorem 1 are a set of LMIs since we are able to transform them
to the following equivalent LMIs, respectively:

P4+ 4P+y,P+3P -K,P —oPB, -B,PC,

—a, B/ P —a,/ 0 (<0,

_B] 51TP 0 _B]I
and

PA,+4,P+v,P’+8,P°-K,P —a,PB, -B,PC,

—a, B3P —a, 0 (<0,

_Bz (_j;P 0 _le
where / is an identity matrix.

Let P=1,a,=a, =B, =B, =7, =7, =0, =0, =1, one has the following Corollary.
. Q= eR [ y]<o,} and
A4 || o+ [[AB, || Lo +[|AC, [[ Lo, <y, (| 4 [[ o+ [ By || Loy +[[ C || Lyoy)T< vy,
1A4, [[o, +||AB, || Lyo,+[[AC, [ Lo, <, (| 4 |0, + | By [[ Lo, + |G | Lot < v, If the
following conditions hold:
(1) 4,+A4,+B.B +C.Cl +2I-K, [ <0,

Corollary 1. Suppose that Q ={x,eR"||x <o}

(2) Zz"'22+52§;+525;+21_K0130’
(3) L,+L,-K, <0, (4 L,+L,-K,<0,
(5) 2K-K,-K,-K, > 0.

12 12, 12 -l
Vi WO Vi Y, 1y +8;
r

2
Then the dual lag quasi-synchronization with error bound ¢ +\/ "2 between the systems (3)
and (4) is achieved, where € is any arbitrary small positive number and » is the unique positive solution of

equation —r =k, -2k +ke™ +k,e™.

Remark 4. From Corollary 1 it is easy to see that if K,K, K|, K, are sufficient large, then conditions (1)-(5)

are satisfied, which means as long as K is large enough the dual lag quasi-synchronization with error bound

-1.2 6—] 2 -1.2 6—] 2 .
e+ \/ WEIH AR between the systems (3) and (4) will occur.

r

4. Simulation and results

In the following, we will confirm that the numerical simulations fully support the analytical results
presented above. For simplicity, we take the Ikeda time-delay system[13] to show the effectiveness of the
proposed results. The Ikeda oscillator is of the form:
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xi(1) = —a,x, + b sin(x, (t = 7,(1))), (®)
where x, is the phase lag of the electric field across the resonator, a, is the relaxation coefficient for the

dynamical variable, and b, is the laser intensity injected into the system. t,(¢) is the round-trip time of the

light in the resonator or feedback delay time in the coupled systems. The Ikeda model was introduced to
describe the dynamics of an optical bistable resonator and is well known for delay-induced chaotic behavior.

When a, =1,b, =4, and 1,(¢) =1.5, the Ikeda model is chaotic, as shown in Fig. 1.

x(t-1.5)

o
(4]
T

x(t)
Figure 1. The chaotic attractor of Ikeda system (8).
For numerical simulations, we assume that the drive system associated with Eq. (8) is of the form
. . t—1,(¢
()= a3+ by sinG 1, () + ¢ sin 220,
()]
) . . x(t—1,())
y](t) =—a,), +b2 Sln(y] (t -1, (t))) +c, Sln(%)-
System  (9)  exhibits  chaotic  behavior for the set of  parameter  values

a,=1,b =4,c,=6,a,=1.2,b, =6,c, =4,7,(t)=1.5, and 1,(¢) =1. The chaotic attractors of the drive
system (9) is shown in Fig. 2.
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v,
o

X,(®

Figure 2. The chaotic attractor of system (9).
Using the proposed delay feedback controller the response system corresponding with system (9) is designed
as

(t-1,(0)

(6 = =@, + by sin(x, (t =7, (1)) + &, sin(22 :

5 —7(0)
2

)+ K (x, (=) = 3, (0)),
(10

Yo(8) = =2y, + b ,sin(y, (£ =1,(2))) + &, sin( )+ K (x, (£ =) = y,(2)).

In the process of simulation, we set

a,=1b =4,c,=6,a,=12,b,=6,c,=4,5,=0.999,5,=4.001,¢,=5.999,7,=1.201,
b,=5999,¢,=4.001,7,(1)=1.5, 1,(t) =1, and 1(¢) = 2. Thus | M |H AB|H|AC|=000], i =1,2
According to Fig. 2, we have ®, = ®, =8. Notice that Lf = l,Lg =1,7(¢) =0, one gets
w, =u, =0.021,v, =v, =0. Suppose K, =51.9980, K, = K, =2, then conditions (1)-(4) are satisfied. If

we take 7 =1, then we obtain K =33.6990, and condition (5) is also satisfied. In virtue of Corollary 1 we
can state that the dual lag quasi-synchronization between the systems (9) and (10) is achieved and the

estimated error boundis D ={d e R|d < \/7‘_1”‘2+6‘_1v‘2+751”§+65]v§ v ={d eR|d<0.021%2 ~0.0297}. The

r

synchronization error curve with the control strength K =33.6990 is shown in Fig.3. From this figure, it is
easy to see that the numerical simulation is in good agreement with the theoretical analysis.
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(a)
0.15 ‘

01} ]

0.05

&
o

-0.05 |

0.15 T

0.1

0.05

0,0
[=)

-0.05

Figure 3. Synchronization error curve with the control strength K=33.6990.

5. Conclusion

This paper discusses the effect of parameter mismatch on the dual-lag synchronization of a class of
coupled chaotic systems. Based on the Lyapunov stability theory, we suggest a general method to achieve
dual-lag synchronization. As an example, numerical simulations for the Ikeda systems are conducted, which
is in good agreement with the theoretical analysis.
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