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Abstract. An economic production quantity model with demand dependent unit production cost in fuzzy 
environment has been developed. Flexibility and reliability consideration are introduced in the production 
process. The models are developed under fuzzy goal and fuzzy restrictions on budgetary cost. The inventory 
related costs and other parameters are taken as fuzzy in nature. The problem is solved by parametric 
geometric programming technique. The model is illustrated through numerical example. The sensitivity 
analyses of the cost function due to different measures are performed and presented graphically. 
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1. Introduction  
Since late 1960’s Geometric Programming (GP) has been very popular in various fields of science and 

engineering. Duffin, Peterson and Zener [1] discussed the basic theories on GP with engineering application 
in their books. Peterson [2], Rijckaert [3], Jefferson and Scott [4] have presented informative surveys on GP. 
The parameter used in the GP problem may not be fixed. It is more fruitful to use fuzzy parameter instead of 
crisp parameter. In that case we introduced the concept of fuzzy parametric GP technique, where the 
parameters are fuzzy. 

Application of GP can be observed in many aspects of inventory/production, there appears only few 
papers concerned with the solution of inventory problems using GP (Cheng [5, 6, 7]; Jung and Klein [8]; 
Kochenberger [9]; Lee [10]; Worrall and Hall [11]). 

The determination of the most cost-effective production quantity under rather stable conditions is 
commonly known as classical economic production quantity (EPQ) inventory problem. Fabulous amount of 
research effort has been expended on topic leading to the publication of many interesting results in the 
literature ([Clark [12], Urgelleti [13], Velnott [14]). 

A basic assumption in the classical EPQ model is that the production set-up cost is fixed. In addition the 
model also implicitly assumes that items produced are of perfect quality (Hax and Canadea [15]). However, 
in reality product quality is not always perfect but directly affected by the reliability of the production 
process employed to manufacturer the product. Thus a high-level of product quality can only be consistently 
achieved with substantial investment in improving the reliability of production process. Furthermore, while 
the set-up time, hence set-up cost, will be fixed in short term, it will tend to decrease in the long term 
because of the possibility of investment in new machineries that are highly flexible, e.g. flexible 
manufacturing system. Van and Putten [16] have addressed extensively the issue of flexibility improvement 
production and inventory management under various scenarios, while the issues of process reliability, quality 
improvement and set-up time reduction have been discussed by Porteus [17, 18], Rosenblatt and Lee [19] 
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and Zangwill [20]. Cheng [5] proposed a general equation to model the relationship between production set-
up cost and process reliability and flexibility. Cheng [6] also introduced demand dependent unit production 
cost in an EOQ model. Tripathy et al. [21] developed an EOQ model with imperfect production process and 
the unit production cost is directly related to process reliability and inversely related to the demand rate. 
Islam and Roy [22] developed an EPQ model with flexibility and reliability consideration in fuzzy 
environment and the model is solved by fuzzy geometric programming technique. Leung [23] considered an 
EPQ model with flexibility and reliability considerations using GP based on the arithmetic-geometric mean 
inequality. 

In this paper we introduced the concept of fuzzy parametric GP technique. Here we have considered the 
coefficients of the problem are fuzzy and taken these in parametric form and solve it by GP technique which 
is formed as a fuzzy parametric GP. An economic production quantity model with demand dependent unit 
production cost in fuzzy environment has been developed. Flexibility and reliability consideration are 
introduced in the production process. The models are developed under fuzzy goal and fuzzy restrictions on 
budgetary cost. The inventory related costs and other parameters are taken as fuzzy in nature. The problem is 
solved by parametric geometric programming technique. 

2. Mathematical model 
     Let a company produces a single product using a conventional production process with a certain level of 
reliability. The process reliability depends on a number of factors such as machine capability, use of on-line 
monitoring devices, skill level of the operating personal and maintenance and replacement policies. The 
process, thereby reducing the costs of scrap and rework of substandard products, wasted material and labor 
hours, more consistently produces higher reliability means products with acceptable quality. However, high 
reliability can only be achieved with substantial capital investment that will increase the cost of interest and 
depreciation of the production process. 

A modern flexible production process that substantially reduces the production set-up time can produce 
the product more efficiently. It is thus economical to produce in smaller batch sizes with flexible process, 
thereby reducing the inventory holding cost. Also, substantial capital expenditure due to illustration of the 
new production process will give rise to might interest changes and great depreciation cost. 

2.1. Notations 
To construct a model for this problem, we define the following variables and parameters: 
S   set-up cost per batch (a decision variable), 
h    inventory carrying cost per item per unit time, 
D    demand rate (a decision variable), 
q   production quantity per batch (a decision variable), 
r   production process reliability (a decision variable), 
f(S, r)                total cost of interest and depreciation for a production process per production cycle, 
TC(D, S, q, r)   total average cost, 
P   unit production cost, 
B  total budgetary cost. 

2.2. Assumptions 
The following assumptions are made for developing the mathematical production quantity model: 

1) The rate of demand D is uniform over time 

2) Shortages are not allowed 

3) The time horizon is infinite 

4) Total cost of interest and depreciation per production cycle is inversely related to a set-up cost and 

directly related to process reliability according to the following equation 
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f(S, r) = aS-b rc        (1.1)  

where a, b, c > 0  are constant real  numbers chosen to provide the best fit of the estimated cost function. 

5) The unit production cost (p) is a continuous function of demand (D) and takes the      following form 

p = γ D-         (1.2) 

where (>1) is called price elasticity and  γ (>0) is a scaling constant. 

The first three assumptions are the basic assumptions used in the classical EPQ model. The fourth 

assumption is based on the fact that to reduce the costs of production set-up and scrap and rework on shoddy 

protects substantial investment in improving the flexibility and reliability of the production process is 

necessary. The fifth assumption is mainly based on the unit variable production is demand dependent. When 

the demand of an item increases then the production/purchasing cost spread all over the items and hence the 

unit purchasing cost reduces and varies inversely with demand. 

The process reliability level r means of all the items produced in a production run only r % are 

acceptable quality that can be used to meet demand. The situation of the inventory model is illustrated in 

figure below: 

 
Figure.1 Schematic of the situation of the economic production quantity model 

2.3. Crisp Model 
If q(t) is the inventory level at time t over the time period (0, T), then  

( ) 0dq t D for t T
dt

           (1.3)  

 

with initial and boundary conditions  q(0)  =  rq,  q(T)  =  0.   

The solution of this differential equation is obtained as 

q(t)  =  rq – Dt          (1.4) 

and T  =  (rq) / D         (1.5) 

Now, the inventory-carrying cost is given by 
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0
( )

T

h q t dt   
0
( )

T

h rq Dt dt  
2 2

2
hr q

D
        (1.6) 

It is evident that the length of the production cycle is the sum of set-up, production, inventory carrying 

and interest and depreciation costs, that is total cost per cycle is 

 S + pq + hq2 r2 / 2D + f(S, r)       (1.7) 

Our objective is to minimize the total cost per unit time under limited budgetary cost. 

So TC (D, S, q, r) = (total cost per cycle) / (qr / D)     (1.8) 

After substituting (1.1), (1.2) and (1.7) in (1.8) which becomes 

 11 1 1 1 1( , , , )
2

cbHqrTC D S q r DSq r D r aDS q r              (1.9) 

It is natural to expect the cost a product to be more if it is more sophisticated and reliable (except 

possible in the event of some major technological breakthrough). So, one can consider the budgetary 

function as an increasing function of reliability. Let the production cost per unit is xPr  and the total 

budgetary cost of the process is less or equal to B.  Here we have considered budgetary cost as a constraint 

function as follows: 

 0,1xPr q B x                     (1.10) 

Hence the inventory model can be written as follows 

 

 

11 1 1 1 1

subject to

( , , , )
2

 0,1

cb

x

HqrMinimize TC D S q r DSq r D r aDS q r

Pr q B x

         

 
             (1.11) 

D, S, q, r >0 

The above problem (1.11) can be treated as a Posynomial Geometric Programming problem with zero 

Degree of Difficulty. 

2.4. Fuzzy Model 
If the coefficients of objective function and constraint goal of (1.11) are fuzzy [24] in nature then crisp 

model (1.11) transformed into a fuzzy model as follows 

 

 

11 1 1 1 1( , , , )
2

0,1

cb

x

HqrMinimize TC D S q r DSq r D r aDS q r

subject to Pr q B x

         

 


 

         (1.12) 

D, S, q, r>0. 

where , , , andh a P B      are fuzzy in nature. 

 

3. Prerequisite Mathematics 

Definition 3.1 Fuzzy Set: A fuzzy set A  in a universe of discourse X is defined as the following set 
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of pairs
    x, x :x XAA  


. Here  : 0,1A X   is a mapping called the membership function of 

the fuzzy set A  and  xA   is called the membership value or degree of membership of x X in the fuzzy 

set A . The larger  xA   is the stronger the grade of membership in A . 

 

Definition 3.2 Normal Fuzzy Set: A fuzzy set A  of the universe of discourse X is called a normal fuzzy 

set implying that there exists at least one x X such that  x 1A  . Otherwise the fuzzy set is subnormal. 

 

Definition 3.3 -Level Set or -cut of a Fuzzy Set:  The -level set (or interval of confidence at level 

 or -cut) of the fuzzy set A  of X is a crisp set A that contains all the elements of X that have membership 

values in A  greater than or equal to  i.e.   : , , [0,1]AA x x x X        

 

Definition 3.4 Fuzzy Number:  A fuzzy number A  is a fuzzy set of the real line  whose membership function 

( )A x   has the following characteristics with   a1  a2  a3  a4   

1 2

2 3

3 4

( )
1

( )
( )
0

L

A
R

x for a x a
for a x a

x
x for a x a

for otherwise






 
     


  

where ( )L x :[a1,a2][0,1] is continuous and strictly increasing; ( )R x :[a3, a4][0, 1] is continuous and 
strictly decreasing. 

 

4. Mathematical analysis 
Consider a particular non-linear programming problem  

0 ( )
. . ( ) 1 (1 )i

Min g x
s t g x i n  

      (4.1) 

                                                               x > 0. 
Its objective and constraint functions are of the form 

1 1

( ) (0 )
i

ikj

T m

i ik j
k j

g x c x i n

 

     

where xj > 0; and cik, ρikj are real numbers.  
The constraint in (4.1) needs softening and considering the problem of fuzzy objective and constraint 

with fuzzy coefficients, we transform (4.1) into a fuzzy geometric programming [25] as follows: 

0 ( )Min g x         (4.2) 

( ) 1 (1 ),isubject to g x i n  


 
x > 0, 
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where  1 2, ,..., T
mx x x x  is a variable vector, 

          
1 1

( ) (0 )
i

ikj

T m

i ik j
k j

g x c x i n

 

     are all posynomial of x in which coefficients ikc  are fuzzy 

numbers. 
Here for fuzzy numbers  1 2 3, ,ik ik ik ikc c c c containing the coefficients  0 ;1ik ic i n k T    , with 

the membership function as follow 

 

2
1 2

2 1

2
2 3

3 2

0

ik

ik
ik ik

ik ik

ik
c ik ik

ik ik

c t for c t c
c c
t ct for c t c

c c
otherwise



   
 

  






        (4.3) 

Here α-cut of  0 ;1ik ic i n k T     is given by  

         1 2 1 3 3 2, ,ik ikL ikR ik ik ik ik ik ikc c c c c c c c c                  (4.4) 

 
 
Proposition 4.1 If the coefficients of the fuzzy geometric programming problem are taken as fuzzy 
numbers then the problem (4.2) reduces to 

 
0

0
0

1 1

kj

T m

kL j
k j

Min c x
 
          (4.5) 

Subject to   
   

1 1

1, 1

0.

i
ikj

T m

ikL j
k j

j

c x i n

x


 

  



   

If the coefficients are taken as fuzzy numbers then the fuzzy geometric programming problem (4.2) will 
take the form: 

0
0

0
1 1

i
kj

T m

k j
k j

Min c x

 
    

Subject to    
 

1 1

1, 1

0.

i
ikj

T m

ik j
k j

j

c x i n

x



 

  



    

Using α-cut of the fuzzy numbers coefficients, the above problem is reduces to 

   
0

0
0 0

1 1

, kj

T m

kL kR j
k j

Min c c x 
 

                      (4.6) 

Subject to         
1 1

, 1, 1
i

ikj

T m

ikL ikR j
k j

c c x i n 
 

     


 

0.jx   
Which is equivalent to 

 
0

0
0

1 1

kj

T m

kL j
k j

Min c x
 
       (4.7) 
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Subject to   
   

1 1

1, 1

0.

i
ikj

T m

ikL j
k j

j

c x i n

x


 

  



   

4.1. Solution procedure of fuzzy parametric geometric programming 
Solution of parametric problem (4.7) using fuzzy parametric geometric programming problem is 

discussed here. Problem (4.7) is a constrained posynomial GP problem. The number of terms in each 
posynomial constraint function varies and it is denoted by Tr for each r=0,1,2,…,l. Let T=T0+T1+T2+…+Tl 
be the total number of terms in the primal program. The Degree of Difficulty =T-(m+1). 
The dual problem of the primal problem (4.7) is as follows 

Maximize
 

110 1

( )
rkrk

r r

r

T Tl
rkL

rs
s Tr k rk

c
d




 


  

  
   

   
      (4.8) 

    subject to 
0

0
1

1
T

k
k




 ,                                             (Normality condition)                                           

                    
0 1

0
rTl

rkj rk
r k

 
 

 , (j=1,2,...,m)             (Orthogonality conditions) 

                    0rk  ,   (r=0,1,2,…,l; k=1,2,..,Tr).      (Positivity conditions) 
Case I. For Tm+1, the dual program presents a system of linear equations for the dual variables. A solution 

vector exists for the dual variables. 
Case II. For T<m+1, in this case generally no solution vector exists for the dual variables. 

The solution of the GP problem is obtained by solving the system of linear equations of dual problem 
(4.8). Ones optimal dual variable vector * are known, the corresponding values of the primal variable vector 
t is found from the following relations: 

   * * *

1

ikj
m

ikL j i
j

c x d  


    (i=0,1,2,…,T0)    (4.9) 

Taking logarithms in (4.9), T0 log-linear simultaneous equations are transformed as 

 
 

* * *

1
(log ) log

m
i

ikj j
j ikL

d
x

c
 




 
 
 
 

  (i=0,1,2,….,T0)               (4.10) 

It is a system of linear equations in tj (=log xj) for j=1,2,...,n. Since there are more primal variables xj 
than the number of terms T0, many solutions xj (j=1,2,...,n) may exist. So, to find the optimal primal variables 
xj (j=1,2,...,n), it remains to minimize the primal objective function with respect to reduced m-T0 (0) 
variables. When m-T0=0 i.e. number of primal variables = number of log-linear equations, primal variables 
can be determined uniquely from log-linear equations. 

For different value of α [0,1], equ.(4.10) will return different solution set of *
i . And hence different 

solution set for dual as well as primal problem will be obtained. These solutions sets will help decision-
maker to take apt decision. 

5. Parametric Geometric Programming Technique on EPQ Model 
According to section 4, the fuzzy EPQ model (1.11) reduces to a fuzzy parametric geometric 

programming by replacing 0 1(1 )      , 0 1(1 )H H H   , 0 1(1 )a a a   , 0 1(1 )P P P    

and 0 1(1 )B B B    where  0,1   in (1.11). The model takes the reduces form as follows 
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   

   

   

0 11 1 1 1
0 1

11
0 1

0 1

(1 )
( , , , ) (1 )

2
(1 )

(1 ) 0,1

cb

x

H H qr
Minimize TC D S q r DSq r D r

a a DS q r

subject to r q W W x

 
  





   

 

 
    

  

   

       (5.1)  

D, S, q, r>0. 

Applying GP technique the dual programming of the problem (5.1) is 

     
 

52 3 41

0 1 0 1 0 1

1 2 3 4 0 1

(1 ) (1 ) (1 )1 1( )
(1 )

H H a a
Max d

W W

  
    


    

            
                    

   (5.2) 

subject to 

1 2 3 4

1 2 4

1 4

1 3 4 5

1 2 3 4 5

1
(1 ) 0

0
0

( 1) 0

b

c x

   
   
 
   
    

   
   
 

    

      

     (5.3) 

This is a system of five linear equations in five 5 unknowns. Solving we get the optimal values as follows  

*
1

( 1)( 1)
(1 )(2 2) ( 1)

b x
b x x c




 
 


    

       (5.4) 

*
2

( 1)(1 )
(1 )(2 2) ( 1)

x b
b x x c


 
 


    

       (5.5) 

 *
3

(1 ) ( 1)( ) 2
(1 )(2 2) ( 1)

b x c
b x x c

 


 
    


    

       (5.6) 

*
4

( 1)( 1)
(1 )(2 2) ( 1)

x
b x x c




 
 


    

       (5.7) 

 
 

*
5

(1 ) (1 ) ( 1)
( 1) (1 )(2 2) ( 1)

c b x
x b x x c




 
   


     

      (5.8) 

Putting these values in (5.1) we get the optimal solution of dual problem. The values of D, S, q, r is obtained 

by using the primal dual relation as follows 

From primal dual relation we get 
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The optimum solution of the model (1.12) through parametric approach is given by  
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Note that optimal solution of GP technique in parametric approach is depends on α. 

6. An illustrative example of the EPQ model  
A manufacturing company produces a machine. It is given that the inventory carrying cost of the 

machine is $10.5 per unit per year. The production cost of the machine varies inversely with the demand. 

From the past experience, the production cost of the machine is 15000D-3.6, where D is the demand rate. 

The total cost of interest and depreciation per production cycle is 1500S-1.6r, where S and r are set-up cost 

per batch and production process reliability respectively. Let production cost per unit is 0.68r and total 

budgetary cost (C) is $ 58. Determine the demand rate (D), set-up cost (S), production quantity (q), 

production process reliability (r), and optimum total average cost (TC) of the production system. 

Formulation of the said model is presented as follows: 

 

 

1.5 11 1 1 3.6 1 1.6 1

0.6

10.5( , , , ) 15000 1500
2

8 58 0,1

qrMin TC D S q r DSq r D r DS q r

subject to r q x

        

          (6.1) 

The optimum solution of the problem (6.1) by Non-Linear programming (NLP) and Geometric Programming 

(GP) using LINGO [26] are presented in Table 1. 

Table 1 Optimal solution of EPQ model (6.1) 
Method TC*($) D* S*($) q* r* 

GP 114.1258 14.56821 14.91823 9.679971 0.6053934 
NLP 114.1618 14.65152 14.93629 9.799638 0.6051736 

 

When the coefficient are taken as fuzzy number i.e.  15000 14900 1 250   ,  5.25 5 1 0.5   , 

 1500 1475 1 50   ,  8 8 1 0.275    and  58 58 1 2,     0,1   the optimal solutions of the 

fuzzy model by fuzzy parametric geometric programming is presented in table 2. 
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Table 2 Optimal solution of fuzzy EPQ model of (6.1) 

α TC*($) D* S*($) q* r* 

0.1 114.9443 15.54715 13.74584 11.07385 0.5194229 
0.2 114.6381 15.40587 13.92585 10.87414 0.5324381 
0.3 114.3301 15.26491 14.10965 10.67673 0.5458799 
0.4 114.0201 15.12427 14.29737 10.48161 0.5597660 
0.5 113.7083 14.98395 14.48912 10.28876 0.5741147 
0.6 113.3945 14.84396 14.68502 10.09816 0.5889454 
0.7 113.0788 14.70428 14.88520 9.909811 0.6042784 
0.8 112.7610 14.56492 15.08978 9.723689 0.6201351 
0.9 112.4412 14.42587 15.29892 9.539781 0.6365380 
1.0 112.1193 14.28714 15.51275 9.358073 0.6535106 

 
The solution of objective function and decision variables for different value of α is shown by graphical 
presentation in figure 2. 

 

Figure 2 Optimal objective value, decision variables D, S, q and r vs. α 

7. Sensitivity analysis  
The change of optimal solutions of the problem for fuzzy model with small change of tolerance of 

constraint goal when α change is, given in Table 3. 
Table 3 shows that as B changes increasingly the total average cost of the given problem slightly 

decreases, which is expected. So it is clear from the sensitivity analysis that if the management traced on 
proceed reliability, the D and q will be less, so they should not the over 1000 demand. Another fact is that if 
production management decided on the fact they should try to fulfill the demand then the fact is on to be 
relation on the production process reliability and setup cost with changing of tolerance of constraint goal, 
decision variables are also changed. It is noted that the demand and order quantity are increasing with 
increasing tolerance of constraint goal but setup cost and process reliability are decreasing when tolerance 
increasing. 
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Table 3 Change of value of objective function and decision variables for change of α 

α Tolerance 
of  B 

TC*($) D* S*($) Q* r* 

0.25 114.9443 15.54715 13.74584 11.07385 0.5194229 
0.5 114.0867 16.15895 13.02879 12.06080 0.4733597 

 
0.1 

0.75 113.2600 16.77616 12.36821 13.10344 0.4325368 
0.25 114.3301 15.26491 14.10965 10.67673 0.5458799 
0.5 113.6595 15.73480 13.52818 11.41730 0.5074780 

 
0.3 

0.75 113.0079 16.20798 12.98311 12.19061 0.4725617 
0.25 113.7083 14.98395 14.48912 10.28876 0.5741147 
0.5 113.2267 15.31532 14.05581 10.79881 0.5446813 

 
0.5 

0.75 112.7551 15.64837 13.64229 11.32508 0.5172066 
0.25 113.0788 14.70428 14.88520 9.909811 0.6042784 
0.5 112.7883 14.90053 14.61377 10.20473 0.5853072 

 
0.7 

0.75 112.5014 15.09737 14.34996 10.50531 0.5671140 
0.25 112.4412 14.42587 15.29892 9.539781 0.6365380 
0.5 112.3438 14.49043 15.20440 9.634461 0.6297368 

 
0.9 

0.75 112.2469 14.55505 15.11079 9.729751 0.6230312 

 

8. Conclusion  
In this paper, an economic production quantity model with investment costs for set-up reduction and 

quality improvement is formulated. The model has involved one budgetary constraint. The problem is solved 
by Fuzzy parametric GP method. The Fuzzy parametric GP method provides an alternative approach to this 
problem. The method, as illustrated, is efficient and reliable. Here decision maker may obtain the optimal 
results according to his expectation. The method presented is quite general and can be applied to the model 
in other areas of operation research and other field of optimization involvement. 
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