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Abstract.  A new method for the solution of the generalized complementarily problem is introduced. The 
method is based on a no smooth equation reformulation of the generalized complementarily problem and on a 
no smooth Levenberg-Marquardt method for its solution. The method is shown to be globally convergent. 
Numerical results are also given. 
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1. Introduction  
Complementarity theory is a branch of the mathematical sciences with a wide range of applications in industry, 

physical, regional, and engineering sciences. In this paper, we consider the following generalized complementarity 
problem 

                                                                    (1) ,0)()(,0)(,0)( =≥≥ xGxFxGxF T

where  are any two continuously differentiable functions. This problem is denoted 
GCP .(see[1-2].) Several problems arising in different fields, such as game theory, mathematical programming, 
mechanics and geometry, have the same mathematical form which may be stated as (1.1). And (1.1) covers some 
related problems, such as if , then (1.1) reduces to the nonlinear complementarity problem. In the past years, 
several investigators have been concerned with both the theoretical and computational aspects of the above problem. 
Several important results have been established(see [1-10]). 
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In this paper, we consider a nonsmooth Levenberg-Marquardt method with Goldstein line search for 
generalized complementarity problem. This paper is organized as follows. In the next section, we introduce 
the nonsmooth Levenberg-Marquardt method and the global convergence of the method. Finally, numerical 
experimental results are presented. 

 

2. New Levenberg-Marquardt method and its convergence 
In this section, we describe a nonsmooth Levenberg-Marquardt method for generalized complementarity 

problem. In paper [1], C.Kanzow, M.Fukushima have studied an unconstrained minimization reformulation 
of (1.1). The merit function is based on the function  

.),( 22 bababa −−+=ϕ  
The approach presented in this paper is similar, but we use a different merit function, which is based on the 
following function 

},min{ ba  
where "min" denotes the componentwise minimum operator. When x  satisfied  

,0)}(),(min{ 11 =xGxF  
M                                       (2) 

,0)}(),(min{ =xGxF nn  
x solves (1). Throughout this section, we denote  

Published by World Academic Press, World Academic Union 



Shou-qiang Du: A nonsmooth Levenberg-Marquardt method for generalized complementarity problem 268 
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n RxxhxhxH ∈= L  
Thus, the equations (2) can be briefly rewritten as 

,0))(,),(()( 1 == T
n xhxhxH L                                                                           (3) 

which is nonsmooth equations. For solving the systems of equations, we take ∗∂  as a tool instead of the 
Clarke generalized Jacobian, B-differential and b-differential. We give the following for )(xH∗∂ H in (3) 

},,))(,),({()( 1
nT

n RxxhxhxH ∈∇∇=∂∗ L                                                        (4) 
where  if , ),()( xFxh ii ∇=∇ )()( xGxF ii < )()( xFxh ii ∇=∇  or ),()( xGxh ii ∇=∇  if 

)()( xGxF ii = , ),()( xGxh ii ∇=∇  if . In what follows, we use (4) as a tool instead of the 
Clarke generalized Jacobian and b-differential in nonsmooth Levenberg-Marquardt method. 

)()( xGxF ii >

 
Proposition 2.1 Suppose that  and  are defined by (3) and by (4), and all )(xH )(xH∗∂

)(xHV ∗∂∈  are nonsingular. Then there exists a scalar 0>ξ such that 

,1 ξ≤−V ).(xHV ∗∂∈∀  

,ϑ≤V ),,(),( εxNxxHV ∈∂∈∀ ∗  
holds for some constants 0,0 >> εϑ and ),( εxN is a neighbor of x . 

 By the continuously differentiable property of  and  in (1.1), the above Proposition 2.1 can be easily 
obtained. 

F G

   Denote the corresponding merit function as 

.)(
2
1)( 2xHx =ψ  

We assume that the above merit function is continuously differentiable. Now, we give the following 
nonsmooth Levenberg-Marquardt method with Goldstein line search for generalized complementarity 
problem (1.1). 
 
Nonsmooth Levenberg-Marquardt method with Goldstein line search 

Step 0. Given a staring vector ,nRx ∈0 .0),
2
1,0(,2,0 ≥∈>> εσρ p  

Step 1. If ,)( εψ ≤kx stop. 

Step 2. Select an element , find an approximate solution of the system )( kk xHV ∗∂∈ n
k Rd ∈

),()())(( k
T

kkk
T

k xHVdIVV −=+ λ                                                       (5) 
where 0≥kλ  is Levenberg-Marquardt parameter. If the condition 

p
kk

T
k ddx ρψ −≤∇ )(                                                                (6)  

is not satisfied, set . )()( k
T

kk xHVd −=
Step 3. Find kα  by Goldstein line search 

)()()1()( kkkk
T

kkk dxdxx αψψασψ +≤∇−+ ,                                                      (7) 

)()()( kkkk
T

kkk dxdxx αψψσαψ +≥∇+ .                                                      (8) 
Set kkkk dxx α+=+1 , let , and go to Step 1. 1: += kk
 

In what follows, as usual in analyzing the behavior of algorithms, we assume that the above method 
produces an infinite sequence of points. Based upon the above method, we give the following global 
convergence result about nonsmooth Levenberg-Marquardt method with Goldstein line search for solving 
generalized complementarity problem (1). The main proof of the following theorem is similar to Theorem 12 
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in [4]. But the  in (5) and the line search (7), (8), which is used for the solution of )(xH∗∂ kα  is differing to 
Theorem 12 in [4]. 
Theorem 2.1  Suppose that the sequence }{ kλ  is bounded. Then each accumulation point of the sequence 

 generated by the above method is a stationary point of kx ψ . 

   Proof  Assume that . If there are infinitely many ∗→ xx Kk }{ Kk ∈  such that )( kk xd ψ−∇= , then the 
assertion follows immediately from Proposition 1.9 and Proposition 1.16 in [10]. Hence we can assume 
without loss of generality that if  is a convergent subsequence of , then  is always given by 
(5). We show that for every convergent subsequence  for which 

Kkx }{ }{ kx kd

Kkx }{
,0)(lim

,
≠∇

∞→∈ kkKk
xψ                                                                       (9) 

there holds 
∞<

∞→∈
k

kKk
d

,
suplim ,                                                                          (10)  

and 
.0)(suplim

,
>∇

∞→∈
k

T
k

kKk
dxψ                                                            (11) 

In the following, we assume that . Suppose that  is not a stationary point of ∗→ xxk
∗x ψ . By 

(5), we have 

kkk
T

kk dIVVx ))(()( λψ +=∇ kkk
T

k dIVV ⋅+≤ λ)( ,           (12) 

So 
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Note that the denominator in the above inequality is nonzero, otherwise by (2.11), we have .0)( =∇ kxψ  

 would be a stationary point and the algorithm would have stopped. By assumption kx +∞<≤ MIkλ  and 

Proposition 2.1, there exists a constant  such that 01 >k

1)( kIVV kk
T

k ≤+ λ  

from the above inequality, we get 

                               )(1

1
kk x

k
d ψ∇≥                                                                  (13) 

Formula (10) now readily follows from the fact that we are assuming that the direction satisfies (6) with 
, while the gradient 2>p )( kxψ∇  is bounded on the convergent sequence . If (11) is not satisfied 

there exists a subsequence  of ,  
}{ kx

Kkx ′}{ Kkx }{

.0)(lim
,

=∇
∞→′∈ k

T
kkKk

dxψ  

This implies, by (6), that  
.0lim

,
=

∞→′∈ kkKk
d  

Together with (13) implies 
.0)(lim

,
=∇

∞→′∈ kkKk
xψ  

contradicting (9). The sequence  is uniformly gradient related to  according to the definition given 
in [10] and the assertion of the theorem also follows from Proposition 10 and Proposition 17 in [10]. We 
complete the proof. 

}{ kd }{ kx
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1. Remark 2.1  Suppose that (1) has a nonempty solution set,  is a solution of (1) if and only if 

.

nRx ∈∗

0)( =∗xψ  

3. Numerical results 
In this section, in order to show the performance of the above nonsmooth Levenberg-Marquardt method 

with Goldstein line search, we present some numerical results for the nonsmooth Levenberg-Marquardt 
method with Goldstein line search. The results indicate that the method work quit well in practice. We coded 
the algorithms in Matlab 7.0.  

 
Example 3.1 We consider the generalized complementarity problem (1.1), where the functions 

TxxxxxF )32,(),( 2
2

2
1

2
121 += ,  TxxxxG ),104(),( 2

1
2
121 +=

Both  and G  are  continuously differentiable functions. F 22 RR →
We use nonsmooth Levenberg-Marquardt method with Goldstein line search to compute Example 3.1. 

Results for Example 3.1 with initial point are presented in Table 3.1. Tx )10,100(0 =
Table 3.1 

                                                                      
                             Step                      )(xψ  
                                                                      

2     6.250003125000194e+006 
3     3.906259765629028e+005 
4     2.441431884812087e+004 
5     1.525943756584212e+003 
6     95.38369227246184 
7     5.96453298026289 
8     0.37354670617196 
9     0.02353785886130 

10     0.01209032248827 
11     0.00758723940013 
12     0.00352828184957 
13     0.00212747182949 
14     9.409438865392813e-004 
15     5.573881839067386e-004 
16     3.748295466710731e-004 
17     2.715241235025840e-004 
18     2.067091366900774e-004 
19     1.631051000343907e-004 
20     1.322442231610374e-004 
21     1.095398238136108e-004 
22     9.231658839608631e-005 
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