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Abstract.  This paper deals with the reliability-redundancy optimization problem considering the reliability 
of each component as an interval valued number that involves the selection of components with multiple 
choices and redundancy levels which maximize the overall system reliability subject to the given resource 
constraints arise on cost, volume and weight. Most of the classical mathematical methods have failed in 
solving the reliability-redundancy optimization problems because the objective functions as well as 
constraints are non-convex in nature. As an alternative to the classical mathematical methods, heuristic 
methods have been given much more attention by the researchers due to their easier applicability and ability 
to find the global optimal solutions. One of these heuristics is genetic algorithm (GA). GA is a computerized 
stochastic search method of global optimization based on evolutionary theory of Darwin: “The survival of the 
fittest” and natural genetics. Here we present GA based approach for solving interval valued mixed integer 
programming in reliability-redundancy optimization problem with advanced genetic operators. Finally, a 
numerical example has been solved and also to study the effects of changes of different GA parameters, 
sensitivity analyses have been carried out graphically. 

Keywords: Reliability-redundancy optimization, Genetic algorithm, Mixed-integer programming, Interval 
mathematics, Interval order relations 

1. Introduction  
Development of the design of high-tech system depends on the selection of components and 

configurations to meet the functional requirements as well as performance specification. Measures of system 
performance are basically of four types: (i) reliability (ii) availability (iii) mean time to failure and (iv) 
percentile life. Reliability has been widely used and studied as the primary performance measure for non 
maintained systems and becomes an important concern now-a-days, because due to increase of complexity, 
sophistication and automation of high-tech systems, system reliability tends to decrease.  In 1952, the 
Advisory group on the reliability of electronic equipment defined the reliability in a wider sense: reliability 
indicates the probability implementing specific performance or function of products and achieving 
successfully the objectives within a time schedule under a certain environment.  For a system with known 
cost, reliability, weight, volume and other system parameters, the corresponding design problem becomes a 
combinatorial optimization problem. The most well known reliability design problems of this type are 
referred to as the reliability-redundancy optimization problems. 

This type of problem is generally a nonlinear mixed-integer programming problem. To enhance the 
component reliability and providing redundancy while considering the tradeoff between the system 
performance and resources, optimal reliability design that aims to determine an optimal system-level 
configuration has long been a hot topic in reliability engineering design. Over the last four decades, a number 
of notable works has been done in this topic based on various system configurations, performance measures, 
optimization techniques and other features for the improvement of system reliability. Among these, one may 
refer to the recent works of Kuo and Prasad (2000), Kuo and Wan (2007), Zhao et al. (2007), Liang and 
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Smith (2004), Onishi and Kimura (2007), Aggarwal and Gupta (2005), Ha and Kuo (2006a, 2006b), Gen and 
Yun (2006), Coelho (2009), Sung and Cho (1999), Coit, Jin and Wattanapongsakorn (2004), Zafiropoulos 
and Dialynas (2004), Ramirez-Marquez, Coit and Kanok (2004), Ramirez-Marquez and Coit (2007), Cui et 
al. (2004), Painton and Campbell (1995), Utkin an Gurov (1999, 2001), Marseguerra and Podofillini (2005), 
Ravi and Reddy (2000), Kuo et al. (2001), Sun and Li Duan (2002) and Sun, Mckinnon and Li (2001). In 
their works, the reliabilities of the system components are assumed to be known and fixed positive number 
which lies between zero and one. However, in real life situations, the reliability of an individual component 
may not be fixed. It may fluctuate due to different reasons. It is not always possible for a technology to 
produce different components with exactly identical reliabilities. Moreover, the human factor, improper 
storage facilities and other environmental factors may affect the reliabilities of the individual components. So, 
the reliability of each component is sensible and it may be treated as a positive imprecise number. To tackle 
the problem with such imprecise numbers, generally stochastic, fuzzy and fuzzy- stochastic approaches are 
applied and the corresponding problems are converted to deterministic problems for solving them. In 
stochastic approach, the parameters are assumed to be random variables with known probability distributions. 
In fuzzy approach, the parameters, constraints and goals are considered as fuzzy sets with known 
membership functions or fuzzy numbers. On the other hand, in fuzzy-stochastic approach, some parameters 
are viewed as fuzzy sets/fuzzy numbers and others as random variables. However, it is a formidable task for 
a decision maker to specify the appropriate membership function for fuzzy approach and probability 
distribution for stochastic approach and both for fuzzy -stochastic approach. So, to avoid these difficulties for 
handling the imprecise numbers by different approaches, one may use interval number to represent the 
imprecise number, as this representation is the most significant representation among others. Due to this 
representation, the system reliability would be interval valued. To the best of our knowledge, only a very few 
researchers (Gupta (2009), Bhunia (2010) and Sahoo (2010, 2012)) have done their works considering 
interval valued reliabilities of components,  

In this study, we have considered GA-based approach for solving mixed-integer reliability redundancy 
optimization problem considering the reliability of each component as interval valued. As the objective 
function of the redundancy allocation problem is interval valued, to solve this type of problem by GA, order 
relations for intervals numbers are essential. Over the last three decades, very few researchers proposed the 
order relations of interval numbers in different ways. Recently, Mahato and Bhunia [28] proposed the 
modified definitions of order relations with respect to optimistic and pessimistic decision maker’s point of 
view for maximization and minimization problems separately. Very recently, Sahoo, Bhunia and Roy (2011) 
proposed the simplified definition of interval order relations ignoring optimistic and pessimistic decisions. 
However, it has been observed that both the definitions give the same result. 

In this paper, we have considered the problem of reliability-redundancy optimization considering the 
reliability of each component as an interval valued number that maximizes the overall system reliability 
subject to the given resource constraints arise on cost, volume and weight. The corresponding problem has 
been formulated as non-linear mixed integer constrained optimization problem with interval objective and 
some of the variables (i.e., reliability of each component) are interval valued. For solving this problem, we 
have developed advanced genetic algorithm with interval valued fitness function and Big-M penalty 
technique. To illustrate the method, a numerical example has been solved. Finally, to test the performance of 
the developed method, sensitivity analyses have been performed graphically with respect to different GA 
parameters. 

 

2. Nomenclature 
 

n  number of subsystems  

1 2( , ,..., )nx x x x=  vector of the redundancy allocation for the system 
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[ , ]j jL jRr r r=  interval valued reliability of  j-th component 

1 2( , ,..., )nr r r r=  vector of component reliability for the system 

(.) [ (.), (.)]S SL SRR R R=  objective function for the overall system reliability  

[ , ]L RV V  upper limit  volume of the system which is interval valued 

[ , ]L RC C  upper limit  cost of the system which is interval valued 

[ , ]L RW W  upper limit  weight of the system which is interval valued  

(.) [ (.), (.)]i iL iRg g g=  constraints functions, 1,2,...,i m=  

[ , ]i iL iRb b b=  availability of i-th resource ( 1,2,..., )i m=  

jl , ju  lower and upper bounds of jx   

jα  lower bound of jLr  

jβ  upper bound of jLr and lower bound of jRr   

jγ  upper bound of jRr  

S feasible region 
pcross probability of crossover/ crossover rate  
pmute probability of mutation/ mutation rate  

maxgen maximum number of generation  
 

                               

3. Assumptions 
The following assumptions have been considered in the formulation of the problem: 

(i) The reliabilities of all the components are imprecise and interval valued. 
(ii) The chance of failure of any component is independent with respect to other components. 
(iii) All the redundancies are active redundancy without repair. 

4. Finite interval arithmetic 
An interval number A is a closed interval denoted by [ , ]L RA a a=  and is defined 
by [ , ]L RA a a= = { : , }L Rx a x≤ ≤ a x∈� , where , are the left and right bounds respectively and La Ra �  is 
the set of all real numbers. Also, in centre and width form we have [ , ] ,L R c wA a a a a= = , where 

 and   are the centre and the width of the interval A. A real number can 

also be treated as an interval, such as for all
( ) / 2c L Ra a a= + ( ) / 2w R La a a= −

x∈� , x  can be written as an interval [ , ]x x  which has zero 
width. The definitions of arithmetical operations like addition, subtraction, multiplication, division and 
integral power of interval numbers and also the n-th root as well as the rational powers of interval numbers 
are presented. For detailed discussion one may refer to the works of Moore (1979), Hansen and Walster 
(2004) and Karmakar, Mahato and Bhunia (2009).  
 
Definition 4.1: Let [ , ]L RA a a= and be two intervals. Then the definitions of addition, scalar 
multiplication, subtraction, multiplication and division of interval numbers are as follows: 

[ , ]L RB b b=

Addition: [ , ] [ , ] [ , ]L R L R L L R RA B a a b b a b a b+ = + = + +  

Scalar multiplication:  For any a real numberλ ,  
[ , ] if 0

[ , ]
[ , ] if 0

L R
L R

R L

a a
A a a

a a
λ λ λ

λ λ
λ λ λ

≥⎧
= = ⎨ <⎩

Subtraction: [ , ] [ , ] [ , ] [ , ] [ , ]L R L R L R R L L R R LA B a a b b a a b b a b a b− = − = + − − = − −  
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)]Multiplication: [ , ] [ , ] [min( , , , ),max( , , ,L R L R L L L R R L R R L L L R R L R RA B a a b b a b a b a b a b a b a b a b a b× = × =  

Division: 
1 1 1[ , ] [ , ], provided 0 [ , ]L R L

R L

A
RA a a b b

B B b b
= × = × ∉  

Definition 4.2: Let [ , ]L RA a a= be an interval and n be any non-negative integer, then 

[1,  1]                    if 0
[ ,  ]               if 0 or if  is odd
[ ,  ]               if 0 and  is even
[0,  max( ,  )] if 0  and ( 0) is even.

n n
L R Ln
n n
R L R

n n
L R L R

n
a a a n

A
a a a n

a a a a n

=⎧
⎪ ≥⎪= ⎨

≤⎪
⎪ ≤ ≤ >⎩

 

4.1. Functions of intervals 
The interval representations of some elementary useful functions like exponential and logarithmic for 

the interval [ , ]L RA a a=  are given below: 

(i) exp( ) exp([ , ]) [exp( ),exp( )]L R L RA a a a a= =   

(ii) log( ) log([ , ]) [log( ), log( )]L R L RA a a a a= = , provided  0.La >

4.2. Interval order relations 
Let [ , ]L RA a a= and be two intervals. Then these two intervals may be any one of the 

following types: 
[ , ]L RB b b=

Type-1: Two intervals are disjoint.  
Type-2: Two intervals are partially overlapping.  
Type-3: One of the intervals contains the other one.  

Recently, Sahoo, Bhunia and Kapur (2012) proposed the definitions of order relations between two 
interval numbers corresponding to maximization and minimization problems.                         
Definition-4.2.1: The order relation  between the intervals max> [ , ] ,L R c wA a a a a= =  
and [ , ] ,L R c wB b b b b= = , then for maximization problems 

(i)   max for Type Iand Type II intervals,c cA B a b> ⇔ >
(ii)  either or  maxA B> ⇔ c c w wa b a b≥ ∧ < for Type III intervals,c c R Ra b a b≥ ∧ >
According to this definition, the interval  is accepted for maximization case. Clearly, the order 

relation 
A

maxA B> is reflexive and transitive but not symmetric. 
 

Definition-4.2.2: The order relation  between the intervals min< [ , ] ,L R c wA a a a a= =  
and [ , ] ,L R c wB b b b b= = , then for minimization problems 

(i)  min for Type Iand Type II  intervals,c cA B a b< ⇔ <
(ii)   either or minA B< ⇔ c c w wa b a b≤ ∧ < for Type III intervals,c c L La b a b≤ ∧ <  

According to this definition, the interval A  is accepted for minimization case. Clearly, the order relation 
min B< is reflexive and transitive but not symmetric. A

4.3. Mean, Variance and Standard deviation of Interval Numbers 
According to Bhunia, Sahoo and Roy (2010), the mean, variance and standard deviation of n interval 

numbers are defined as follows: 
Let [ , ]i iL iRx x x= , 1,2,...,i n=  , be the i th observation which is an interval number. Then mean ( )x , 

variance , standard deviation( ( )Var x ) ( )xσ  and also coefficient of variation ( of the 
intervals

)COV

1 2, , , nx x x⋅ ⋅ ⋅ are given by  
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1 1

1 1[ , ] ,
n n

L R iL iR
i i

x x x x x
n n= =

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑ ∑ , 

2
2 2

1 1 1

1 1 1Var( ) [ , ] [ , ]
n n n

L R iL iR iR iL
i i i

x x x x
n n n

σ σ
= = =

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ x  

1
2 2

1 1 1

1 1 1[ , ] Var(x) [ , ]
n n n

x L R iL iR iR iL
i i i

x x x x
n n n

σ σ σ
= = =

⎧ ⎫⎛ ⎞⎪ ⎪= = = − −⎨ ⎜ ⎟
⎝ ⎠

⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑  

And 

100 [ 100, 100].x L R

R L
COV

x x x
σ σ σ

= × = × ×  

5. Reliability redundancy optimization problem 
The aim of reliability optimization is to improve reliability of a system. The reliability components 

are not always fixed but may be considered as intervals in reliability redundancy optimizations which are 
necessary for system design having large number of subsystems assembled together. 
 According to the assumptions, the system reliability is interval valued as all the component 
reliabilities are interval valued. Hence a reliability redundancy optimization problem can be constructed with 
system reliability as the objective function in the form of interval. The reliability redundancy problem for 
maximizing system reliability with interval valued reliability components is subject to nonlinear interval 
constraints and it can be formulated as constrained nonlinear mixed-integer programming model. The 
general form of the problem is as follows:  

Maximize [ ] [ ]( ), ,S SL SR L R,R R R f x r r= =  

subject to  [ ]( ) [ ], , , , 1, 2,...,i L R iL iRg x r r b b i m≤ =  

0 1, , 1jL jR jr r x j+≤ ≤ ≤ ∈ ≤ ≤� n  

where SR  is the system reliability, g is the set of constraint functions which are generally associated with 

system volume, weight and cost. Also [ ] [ ] [ ]( )1 1 2 2[ , ] , , , , , ,L R L R L R nL nRr r r r r r r r= L  is the reliability 

vector whose components are intervals and ( )1 2, , , nx x x x= L  is the vector of the redundancy allocation 

for the system, [ , ]jL jRr r  and jx  respectively are the reliability and the number of components in the j-th 

subsystem; [ ]( , ,L R )f x r r  is the objective function of the whole system reliability; [ ],i iL iRb b b=  is the i-

th component of the resource limitations; n is the number of subsystems in the system. The objective of the 
problem is to find the number of redundant components and the bounds of the components reliability for 
each subsystem in such a way that the overall system reliability is maximized. 

6. GA based constraint handling technique 
Genetic algorithm (GA) is one of the powerful computerized heuristic methods (Goldberg (1989), 
Michalewicz (1996), Sakawa (2002) and Deb (2000)) which are being employed for solving the interval 
valued constrained optimization problems. The constrained optimization problem is transformed into 
unconstrained optimization problem with the help of penalty function technique given by Miettinen et al., 
(2003) and Aggarwal and Gupta (2005). In penalty function technique, constraints are added to or subtracted 
from the objective function to penalize the infeasible solutions. When the fitness function is increased or 
decreased with a penalty term multiplied by penalty coefficient there may appear difficulty to select the 
initial value of the same and also to select the upgrading strategy for the penalty coefficients (Goldberg, 
1989). To overcome this difficulty we have to solve the same problem with a fitness function by penalizing 
with a large positive number (say, M which can be written in the interval form as[ , ]M M ) following Gupta 
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et al. (2009) and Bhunia et al. (2010). This technique is called as Big-M penalty method. The reduced 
objective function for this penalty method is given below. 

Maximize  ˆ ( ,[ , ]) ( ,[ , ]) ( ,[ , ])S L R S L R L RR x r r R x r r x r rθ= +

where 
[0,0] if ( ,[ , ])

( ,[ , ])
( ,[ , ]) [ , ] if ( ,[ , ])

L R
L R

S L R L R

x r r S
x r r

R x r r M M x r r S
θ

∈⎧
= ⎨− + − −⎩ ∉

 

{ }( ,[ , ]) : ( ,[ , ]) [ , ], 1,2,...,L R i L R iL iRS x r r g x r r b b i m= ≤ =  

and , L Rl x u r rα β γ′ ′≤ ≤ ≤ ≤ ≤ ≤  

where , ,1 2( , ,..., )ql l l l′ ′ ′ ′= 1 2( , ,..., )qu u u u′ ′ ′ ′= 1 2( , ,..., )nx x x x= , 1 2( , ,..., )nα α α α= , 1 2( , ,..., )nβ β β β=  and 

1 2( , ,..., ).nγ γ γ γ=  

7. Genetic Algorithm  
This algorithm starts with an initial population of chromosomes which are the set of randomly generated 

solutions. These populations are improved from generation to generation by artificial evolution and genetics. 
During each generation, each chromosome in the population is evaluated using some measure of fitness and 
the population of the next generation is created through genetic and evolutionary operators. In genetic 
algorithm, there are two genetic operators such as crossover and mutation. Crossover operator creates new 
chromosome (offspring) by combining the features of two or more parent chromosomes. On the other hand, 
mutation operator acts on a single chromosome and produces an offspring with minor changes.  

For implementing the GA in solving the optimization problems, the following basic components are 
considered. 
• GA Parameters 
• Chromosome representation and initialization of population 
• Evaluation of fitness function 
• Selection process 
• Genetic operators (crossover, mutation and elitism) 

There are basically four parameters to be decided upon in the genetic algorithm, viz. population size 
(popsize), maximum number of generations (maxgen), probability of crossover (pcross)  and probability of 
mutation (pmute). Choices of popsize and maxgen are problem dependent. Again, from the principle of 
natural genetics, it is obvious that the crossover rate is greater than that of mutation rate. Usually, the 
crossover rate varies from 0.8 to 0.95 whereas the mutation rate varies from 0.05 to 0.2. Sometimes, it is 
considered as 1 n  where  is the number of genes (or variables) of the individuals.   n

For implementation of GA, the appropriate chromosome/individual representation of solution for the 
given problem is reasonably important. As reported in the existing literature there are several types of 
representations, such as binary coded, real coded, octal coding or hexadecimal coding. Among these 
representations, real coding representation is very popular. In this representation, each component (gene) of 
the chromosome is the value of the decision variable. 

After appropriate representation of chromosome, the next step is to initialize the chromosomes that will 
take part in the artificial genetic operations. This process creates popsize number of chromosomes in which 
every component for each chromosome is randomly generated within the bounds of the corresponding 
decision variable.  

After obtaining a population of potential solutions, we need to check how good they are. So we have to 
measure the fitness value for each chromosome by using fitness function. In this work, the value of the 
transformed unconstrained objective function (due to different penalty technique) corresponding to the 
chromosome is taken as the fitness value of that chromosome.  

In the application of GA, the selection operator plays an important role because it is the first operator 
applied to the population. The goal of this operator is to select the above average solutions and eliminate 
below average solutions from the population for the next generation under the principle “survival of the 
relatively fit”. In this work, we have used tournament selection process of size two with replacement as the 
selection operator with the following assumptions: 
• When both the chromosomes/individuals are feasible then one with better fitness value is selected. 
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• When one chromosome/individual is feasible and another is infeasible then the feasible one is selected. 
• When both the chromosomes/individuals are infeasible with unequal constraints violation, then the   

chromosome with less constraints violation is selected. 
• When both the chromosomes/individuals are infeasible with equal constraints violation, then any one 

chromosome/individual is selected. 
 

After the selection process, crossover operator is applied to the resulting chromosomes which have 
survived. This is an operation that really empowers the GA. It operates on two or more parent 
chromosomes/solutions at a time and creates the offspring by recombining the feature of the parent solutions. 
In this work, we have used uniform crossover for integer variables and whole arithmetical crossover for 
floating point variables.  

The aim of mutation operation is to introduce the random variations into the population. Sometimes, it 
helps to regain the information lost in earlier generations and responsible for fine tuning of the system. This 
operator is applied to a single chromosome only. Usually, its rate is very low; otherwise it would defeat the 
order building being generated through selection and crossover operations. This operator attempts to bump 
the population gently into a slightly better course. This means that mutation changes either single gene or all 
the genes of a randomly selected chromosome slightly. In this work we have used one-neighborhood 
mutation for integer variables and boundary mutation for floating point variables.  

In order to preserve and use the best solution obtained in the previous generations, a process is 
considered called elitism process. Sometimes there is a chance that the best chromosome may be lost when a 
new population is generated by crossover and mutation operations. To remove this situation the worst 
individual/chromosome is replaced by the best individual/chromosome in the current generation. Instead of 
single chromosome, one or more chromosomes may take part in this operation.  

The termination condition is a condition for which the algorithm/process is going to stop. For this 
purpose any one of the following three conditions is considered as termination condition. 
• the best individual does not improve over specified generations, 
• the total improvement of the last certain number of best solutions is less than a pre-assigned small 

positive number 
• the number of generations reaches a prescribed finite number of generation (called maximum number 

of generation).  

Basically genetic algorithm is a computerized stochastic search optimization. In this algorithm results 
are obtained for different sets of random numbers. For this purpose a number of independent runs have been 
performed to calculate the system reliability. Among all the results in different runs the best found value of 
system reliability has been considered. For this purpose we have used the nomenclature “Best found system 
Reliability”. On the other hand, “Mean system Reliability” is the mean value of all the values of system 
reliability in different runs. 

8. Numerical Examples  
To test the performance of the proposed GA in solving constrained nonlinear mixed integer program 

problem with interval valued objective and interval constraint functions, we have solved the following 
example:  

 [ ]( ) [ ]( )
1

Maximize      , , 1 1 , i
n x

L R iL iR
i

f x r r r r
=

⎡ ⎤= − −⎢ ⎥⎣ ⎦∏    

subject to          

[ ]( ) [ ]2
1

1
, , ,

n

L R i i L
i

g x r r v x V V
=

= ≤∑ R  

[ ]( ) ( ) [ ]0.25
2

1
, , ,i

n
x

L R i i L
i

g x r r C r x e C C
=

⎡ ⎤= + ≤⎣ ⎦∑ R  

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, Vol. 7 (2012) No. 4, pp  284-295 291
 
 

[ ]( ) [ ]0.25
3

1
, , ,i

n
x

L R i i L
i

g x r r w x e W W
=

= ≤∑ R  

where  1 10,i ix x +≤ ≤ ∈� , 

[ ]60.5 1 10 , ,iL iR i iL iRr r r r r−≤ ≤ ≤ − =  

where ( ) [ ]( )/ log ,i i iL iRc r T r rα ⎡= −⎣ ⎤⎦  is the cost component with reliability  of the i-th subsystem; T is 

the operating time during which the component must not fail.    
ir

 

 
Fig. 1: Reliability-redundant system of n components 

The proposed method has been coded in C programming language. The computational work has been 
done on a PC with Intel Core-2-due 2.5 Ghz processor in LINUX environment. For each case 20 independent 
runs have been performed to calculate the best found system reliability which is nothing but the optimal 
value of the system reliability. In this computation, the values of genetic parameters like, population size, 
crossover rate, mutation rate and maximum number of generations have been taken as popsize=20, 
pcross=0.85, pmute=0.15 and maxgen=30 respectively.    

 
 

Table 1: values of different parameters used in the example  
Stage 510 iα  iβ  iv  iw v c w T 

1 
2 
3 
4 

1.0 
2.3 
0.3 
2.3 

1.5 
1.5 
1.5 
1.5 

1 
2 
3 
4 

6 
6 
8 
7 

 [240, 260]  [390, 410]  [490, 510] 1000 

 
The best found result obtained from 20 independent runs is given below: 
[ ] [ ] [ ] [1 2 3 40.862454,  0.908425 , 0.880435,  0.953215 , 0.886079,  0.961301 , 0.865099,  0.970941 ,r r r r= = = = ]  

, , ,  . 1 7x = 2 5x = 3 5x = 4 6x =

The value of system reliability is [0.999949, 1.000000] having elapsed time 1.0 710−×  sec. 
for (0.85,0.85,0.85,0.85)α = , (0.89,0.89,0.89,0.89)β = and (0.99,0.99,0.99,0.99)γ = .   

The mean, variance and standard deviation of the system reliability obtained from 20 independent runs 
are computed in the form of interval and are [0.999922, 1.000000], [0.0, 0.122 ], [0.0, 0.111710−× 310−× ] 
and [0.0, 0.011058] respectively. 
 
8.1 Sensitivity Analysis 
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To investigate the overall performance of the proposed GA based Big-M penalty technique for solving 

Reliability Redundancy Optimization problem, sensitivity analyses have been carried out graphically on the 
lower bound (LR), upper bound (UR) and centre value (MR) of the system reliability with respect to 
different GA parameters (popsize, maxgen, pcross and pmute) separately by changing one parameter at a 
time and keeping the other at their original value. These have been shown in Fig. 2 – Fig. 5. From Fig. 2, it is 
observed that both the bounds and the centre value of the system reliability be the same for all the values of 
population size from 20 to 100.  On the other hand, Fig. 3 shows that both the bounds along with the centre 
value of the system reliability remain same for all the values of maximum number of generations from 30 to 
100. In all cases, the upper and lower bounds are fixed and they are 1.0 and 0.999950 respectively. 

In Fig.4, system reliability is shown with the change of probability of crossover (pcross) (0.7~0.95). 
From Fig.4, it is seen that the upper bound of the system reliability remains unaltered, whereas the lower 
bound be the same for and more. 0.75pcross =

From Fig.5, it is observed that the centre value and the lower bound of the system reliability remain 
unchanged for  and more, whereas the upper bound be the same for all the values of pmute.  0.15pmute =

 
Fig. 2: Population size (popsize) vs. System Reliability 

 

  
Fig. 3: Maximum number of generations (maxgen) vs. System Reliability 
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 Fig. 4: Probability of crossover (pcross) vs. System Reliability 
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Fig. 5: Probability of mutation (pmute) vs. System Reliability 

9. Concluding Remarks 
Generally, the goal of the reliability-redundancy allocation problem is to find the number of redundant 

components so as to maximize the system reliability. However, there are some redundancy problems where 
the numbers of redundant components as well as the component reliabilities are to be found. In this paper, 
we have solved such type of problem with the help of GA based constraint handling technique and interval 
order relations. This type of problems occurs in complex bridge system and over speed protection system for 
a gas turbine. 

In this approach, there is also a drawback. As the objective function (system reliability) is interval 
valued so that the best found solution obtained from proposed method is also interval valued. In that case, 
there is an uncertainty which is nothing but the width of the interval. In other approaches the objective 
function is fixed. 

For solving the optimization problem, the GA based Big-M penalty approach has been used. In his 
approach, the value of M is considered for the value of the fitness function corresponding to infeasible 
solution. Gupta, Bhunia and Roy (2009) applied this for solving constrained reliability optimization 
problems. In their works there is no indication regarding the vale of M. However, for infeasible solution the 
value of M may be taken depending on the fitness function value. In case of maximization problem, a small 
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value and in case of minimization problems a value may be considered for M for solving constrained 
optimization problems. 
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