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Abstract.  In this paper, we proposed a spline based computational simulations for solving self-adjoint 
singularly perturbed two-point boundary value problems. The original problem is reduced to its normal form 
and the reduced boundary value problem is treated by using difference approximations via cubic splines in 
tension. The convergence of the method is analyzed. Some numerical examples are given to demonstrate the 
computational efficiency of the present method. 
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1. Introduction  

We consider the following self-adjoint singularly perturbed two-point boundary value problem: 

)()())(( xfyxbyxaLy =+′′−≡ ε  on [0, 1] with ,)1(,)0( β=α= yy    (1.1) 

where βα ,  are given constants and ε  is a small positive parameter. We also assume that the coefficients 
a(x), b(x) are sufficiently smooth function satisfying        

0)(,0)(,1)( 10 >≥≥>≥ ξξ xbxaxa        (1.2) 

where 0ξ  and 1ξ are some positive constants. Under these conditions operator L admits a maximum 
principle [1]. These type of problems arise frequently in fluid mechanics, aerodynamics, plasma dynamics, 
magneto hydrodynamics, oceanography, optimal control, chemical reactions, etc., In recent years, seeking 
numerical solutions of singularly  perturbed boundary value problems has been the focus of a number of 
authors. Niijima [2, 3] produced a uniformly second order accurate difference schemes where as Miller [4] 
gave sufficient conditions for the uniform first order convergence of a general three-point difference schemes. 
Boglayev [5] discussed a variational difference scheme for solving boundary value problems with   a    small 
parameter in the highest derivative. Schatz and Wahlbin [6] used finite element techniques for solving 
singularly perturbed reaction diffusion problems in two and one dimension. In [7] a method based on spline 
collocation was presented for solving singularly perturbed boundary value problems. Cubic spline in 
compression for second order singularly perturbed boundary value problems was presented in [8]. 
Kadalbajoo and Devendra Kumar [9] presented a numerical method based on finite difference method with 
variable mesh for solving second order singular perturbed self-adjoint two-point boundary value problems. 
In [10] a fitted operator finite difference method via the standard Numerov’s method was presented for 
solving self-adjoint singular perturbation problems. Riordan and Stynes [11] presented a uniformly accurate 
finite element method for solving singularly perturbed one dimensional reaction-diffusion problem. In [12], a 
spline approximation method was presented for solving self-adjoint singular perturbation problem on non-
uniform grids. Lubuma and Patidar [13] presented uniformly convergent non-standard finite difference 
methods for solving self-adjoint singular perturbation problems. Mishra et.al [14] extended the initial value 
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technique to self-adjoint singularly perturbed boundary value problems. Recently, variable mesh finite 
difference method [15] was extended for solving self-adjoint singularly perturbed two-point boundary value 
problems.  

In order to solve the self-adjoint singularly perturbed problem, first we reduce equation (1.1)-(1.2) to its 
normal form and then the reduced problem is treated by spline method. In general finding numerical solution 
of a second order boundary value problem with y ′  term is more difficult as compared to a second order 
boundary value problem with absence of y ′  term. Therefore, it is better to convert the second order 
boundary value problem with  term to the second order boundary value problem without term i.e to its 
normal form. In this paper, we have presented computational simulations of self-adjoint singular perturbed 
two-point boundary value problems via spline method. Convergence of the method is analyzed and some 
numerical evidences are included to show the applicability and efficiency of the method.. 

y ′ y ′

 

2. Description of the Method 

We consider the following self-adjoint singularly perturbed two-point boundary value problem: 

)x(fy)x(b)y)x(a( =+′′ε−  on [0, 1] with ,)(y,)(y β=α= 10    (2.1) 

where βα ,  are given constants and ε  is a small positive parameter. We also assume that the coefficients 
a(x), b(x) are sufficiently smooth function satisfying        

  001 10 >ξ≥≥>ξ≥ )x(b,)x(a,)x(a       (2.2) 

where  and  are some positive constants. Equation (2.1) can be written as  0ξ 1ξ

)x(f)x(y)x(b)x(y)x(a)x(y)x(a =+′′ε−′′ε−   or 

)x(a
)x(f)x(y

)x(a
)x(b)x(y

)x(a
)x(a)x(y

ε
−=

ε
−′

′
+′′   or 

)x(r)x(y)x(q)x(y)x(p)x(y =+′+′′       (2.3) 

where    
)(
)()(

)(
)()(,

)(
)()(

xa
xfxrand

xa
xbxq

xa
xaxp

ε
−=

ε
−=

′
=  

Consider the transformation  

           (2.4) )x(V)x(U)x(y =

Then equation (2.3) can be written as its normal form as 

          (2.5) )x(G)x(V)x(A)x(V =+′′

with 10 1
11

0
00 γ==γ==

)(U
)(y)(V,

)(U
)(y)(V ,  R, ∈γγ 10     (2.6) 

where 2))((
4
1)(

2
1)()( xpxpxqxA −′−=  
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  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψψ= ∫

x

d)(pexp)x(r)x(G
02

1
       (2.7) 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψψ−= ∫

x

d)(pexp)x(U
02

1
.        (2.8) 

Multiplying equation (2.5) throughout by ε−  we get, 

  ,       (2.9) )x(Z)x(V)x(W)x(V =+′′ε−

with boundary conditions 

 10 10 γ=γ= )(V,)(V         (2.10) 

where  and . )x(G)x(Z,)x(A)x(W ε−=ε−= 0>≥ w)x(w ∗

Now, since 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψψ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ψψε−=ε−= ∫∫

xx

d)(pexp
)x(a
)x(fd)(pexp)x(r)x(G)x(Z

00 2
1

2
1

  (2.11) 

Equation (2.11) shows that Z(x) is independent onε .However W(x) may or may not be depend onε . 
 

3. Derivation of the Scheme 

We develop a smooth approximate solution of (2.9) using spline in tension. For this purpose we 

discretize the interval [0, 1] divided into a set of grid points ihxi = , i = 0,1,…, N with 
N

h =
1

2

0→
=τ ]

 . A function 

of class which interpolates y(x) at the mesh point  depends on a parameter , reduces to 
cubic spline in [a, b] as τ is termed as parametric cubic-spline function. The spline function 

satisfying in , the differential equation, 

),x(S τ ]b,a[C ix τ

)x(S),x(S x,x[ ii 1+

  [ ] [ ]
h

)xx(
)x(S)x(S

h
)xx(

)x(S)x(S)x(S)x(S i
ii

i
ii

−
τ−′′+

−
τ−′′=τ−′′ ++

+
11

1  (3.1) 

where  and  is termed as cubic spline in tension. Solving the equation (3.1) and determining 
the arbitrary constants from the interpolatory conditions 

ii V)x(S = 0>τ

ii V)x(S =  and  . After 

writing
11 ++ ii =V)x(S

τ=λ h , we get 

 ⎥⎦

⎤
⎢⎣

⎡ −
λ+

−
λ

λλ
= +

+ h
)xx(

sinhM
h

)xx(
sinhM

sinh
h)x(S i

i
i

i
1

12

2
 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ λ
−

−
λ

− +
++ ii

i
ii

i V
h

M
h

)xx(
V

h
M

h
)xx(h

2

2
1

12

2

12

2
   (3.2) 

Differentiating equation (3.2) and using continuity conditions which lead to the tridiagonal system.  
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      (3.3) ( ) 1111211
2 22 −++− +−=λ+λ+λ iiiiii VVVMMMh

where ⎟
⎠
⎞

⎜
⎝
⎛

λ
λ

−
λ

=λ
sinh

11
21  ,  ( )1coth1

22 −λλ
λ

=λ ,  )x(SM i ′′= ,  i=1(1)N-1 

The condition (3.3) ensures the continuity of the first order derivatives of the spline ),( τxS  at interior nodes. 
We rewrite (2.9) in the form iiii )x(Z)x(V)x(WM −=

x x x

211
2

1 22 ++−− λ+λ+ε−
2

ε and substituting into equation (3.3), we get the 
following three term recurrence relation, which gives the approximationV ,V ,…, V  of the solution V(x) 
at the points , ,… . 

1 2 1−N
1 2 1−N

 ,    

           i =1, 2,…N-1     (3.4) 

)VWh(V)Wh(V)Wh( iiiiii 11
2

1
2 ε−+λ+ε+

)ZZZ(h iii 11211 2 +− λ+λ+λ−=

Using  (3.4) with (2.10) we get the approximate solution of V(x) at the grid points , since U(x) is 
known, therefore the solution of the original problem (2.1) at these grid points will be obtained by using 
(2.4) . 

ix

4. Convergence Analysis 

The above system (3.4) can be written in the matrix form as follows 

 BV – C=0,           (4.1) 

Where  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ+ελ+ε−
λ+ε−λ+ελ+ε−

λ+ε−λ+ελ+ε−
λ+ε−λ+ε

=

−−

−−−

)Wh(Wh
Wh)Wh(Wh

Wh)Wh(Wh
Wh)Wh(

B

NN

NNN

11
2

2
2

1

1
2

121
2

3
2

1

3
2

121
2

1
2

1

2
2

111
2

200
20

0
02
002

K

K

OOO

K

K

 

and , [ ]TNNNN V)Wh(F,F,...,F,F,V)Wh(FC 1
2

113200
2

11 +− λ+ε−−−λ+ε−−−=

with  ,    i=1(1)N-1. )ZZZ(hF iiik 11211
2 2 +− λ+λ+λ−=

Now, consider the above system with the exact solution T
N ]V,...,V[V 11 −= , we get 

 0=+− ihTCVB       (4.2) 

Where  T
h)N(hih ]T,...T[T 11 −=

with truncating error  

[ ] )h(O)x(Vh)x(Vh)x(Vh)(T i
vi

i
iv

iih
8614

1
2

21 360
1

1212
121 +ε⎟

⎠
⎞

⎜
⎝
⎛ −
λ

+ε⎟
⎠
⎞

⎜
⎝
⎛ −λ+′′ελ+λε+−=  

Let ,iii VVe −= 1)1(1 −= Ni , be the discretization error, subtracting (4.1) and (4.2), we have 
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 ihTBE =         (4.3) 

where  For W(x) > 0, we can choose h sufficiently small so that the matrix B is 

irreducible and Monotone [16]. It follows that 

.]e,...,e[E T
N 11 −=

1−B exists and its elements are non-negative. From (4.3) we 
have . Following [17],  ihTBE = 1−

TBETBE ih ≤⇒= −1 . 

Therefore, )h(OE 2= for any choice of 1λ  and 2λ  whose sum is 
2
1

  and )h(OE 4=  for 

12
,

12 21 == λλ 51
. Thus, we summarize the following. 

Theorem: The method given by (3.4) for solving the boundary-value problem (2.9)-(2.10) for    

and sufficiently small h, gives a second-order convergent solution for arbitrary 

0≥)x(W

1λ  and 2λ with 
2
1

21 =+ λλ  

and a fourth-order convergent solution for
12
5,

12
1

21 == λλ .  After knowing the value of V(x) in the given 

domain, we can calculate the value of y(x) using (2.4). 
 

5. Computational Results 

To show the computational competence of proposed numerical method, we implemented the present method 
on three self-adjoint singularly perturbed problems. The rate of convergence is determined as given in [17].  

Rate of convergence, ,...2,1,0,log
,1

2, =⎟
⎟
⎠

⎜
⎜
⎝

=
ε+

ε k
I

r
k

k
, ⎞⎛ εI k  

where ,...2,1,0,max 2
2

2
, =−= kyyI jjjk ε

1+k
h

k
h

 

Example 1: First, we consider the problem 

( ) )x(fy)x(
)x(

)x(y =+ε+
+

+′′ε− 11
1

4
4  

subject to the boundary conditions 
y(0) = 2,  y(1) = -1 

where f(x) is chosen such that the exact solution is given by 

ε

−

ε
−

+ε
−

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

+⎟
⎠
⎞

⎜
⎝
⎛

+
π

−=
1

1
1

2

1

3

1
4

e

ee

x
xcos)x(y

)x(
x

. 

In Table 1(a)-1(d) we have compared the maximum absolute errors for the present method with the methods 
in [11, 12, 13, 15] for different values of ε  and N.  Maximum absolute errors and order of convergence for 
the present method are given in Table 1(e) and Table 1(f) respectively.   
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Table 1(a): Maximum absolute errors for the Example 1 with 
2501 .

N
⎟
⎠
⎞

⎜
⎝
⎛=ε  . 

Present method N Stynes[11] Patidar[12] Lubuma 
[13] 

Method in 
[15] 

3
1

6
1

21 =λ=λ ,  
12
5

12
1

21 =λ=λ ,

16 9.5E-02 5.8E-02 3.8E-02 2.0E-02 5.1E-02 1.3E-03 
32 2.3E-02 1.3E-02 9.6E-03 4.7E-03 1.3E-02 7.9E-05 
64 5.6E-03 3.2E-03 2.4E-04 1.1E-03 3.2E-03 4.8E-06 
128 1.3E-03 7.8E-04 6.0E-04 2.6E-04 7.8E-04 2.9E-07 
256 3.1E-04 1.9E-04 1.5E-04 6.1E-05 1.9E-04 1.7E-08 

 

Table 1(b): Maximum absolute errors for the Example 1 with 
501 .

N
⎟
⎠
⎞

⎜
⎝
⎛=ε . 

Present method N Stynes[11] Patidar[12] Lubuma 
[13] 

Method in 
[15] 

3
1

6
1

21 =λ=λ ,  
12
5

12
1

21 =λ=λ ,

16 7.8E-02 4.8E-02 2.5E-02 1.7E-02 4.8E-02 1.1E-03 
32 1.8E-02 1.2E-02 6.3E-03 4.0E-03 1.2E-02 5.9E-05 
64 4.2E-03 3.1E-03 1.6E-03 9.1E-04 2.9E-03 3.0E-06 

128 1.0E-03 1.0E-03 3.9E-04 2.0E-04 7.1E-04 1.2E-07 
256 2.5E-04 1.9E-04 9.8E-05 5.0E-05 1.8E-04 4.5E-09 

 

Table 1(c): Maximum absolute errors for the Example 1 with 
7501 .

N
⎟
⎠
⎞

⎜
⎝
⎛=ε . 

Present method N Stynes[11] Patidar[12] Lubuma [13] Method in 
[15] 

3
1

6
1

21 =λ=λ ,  
12
5

12
1

21 =λ=λ ,

16 6.6E-02 4.8E-02 1.6E-02 1.5E-02 4.6E-02 7.5E-04 
32 1.6E-02 1.2E-02 4.3E-03 3.4E-02 1.1E-02 1.9E-05 
64 4.0E-03 3.0E-03 1.1E-03 9.3E-04 2.9E-03 2.2E-06 
128 1.0E-03 7.6E-04 2.7E-04 2.4E-04 8.3E-04 5.5E-07 
256 2.6E-04 2.1E-04 6.9E-05 6.4E-05 2.8E-04 9.1E-08 

 

Table 1(d): Maximum absolute errors for the Example 1 with 
011 .

N
⎟
⎠
⎞

⎜
⎝
⎛=ε . 

Present method N Stynes[11] Patidar[12] Lubuma [12] Method in 
[15] 

3
1

6
1

21 =λ=λ ,

 
12
5

12
1

21 =λ=λ ,

 
16 6.4E-02 4.8E-02 1.4E-02 1.4E-02 4.6E-02 2.9E-04 
32 1.7E-02 1.2E-02 7.9E-03 4.1E-03 1.3E-02 9.5E-05 
64 4.2E-03 3.4E-03 2.4E-03 1.1E-03 4.4E-03 2.3E-05 

128 1.3E-03 1.0E-03 6.2E-04 3.2E-04 1.9E-03 4.8E-06 
256 3.7E-04 3.1E-04 1.6E-04 9.6E-05 8.8E-04 9.9E-07 
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Table 1(e): Maximum absolute errors for the present method of Example 1  
 

128 256 512 N 
 
ε  3

1
6
1

21 =λ=λ ,

 
12
5

12
1

21 =λ=λ ,

 
3
1,

6
1

21 =λ=λ

 
12
5,

12
1

21 =λ=λ

 
3
1,

6
1

21 =λ=λ  
12
5,

12
1

21 =λ=λ

42−  7.1E-04 7.2E-08 1.8E-04 4.5E-09 4.4E-05 2.8E-10 
52−  7.8E-04 3.8E-07 1.9E-04 2.4E-08 4.9E-05 1.5E-09 
62−  1.1E-03 1.5E-06 2.8E-04 9.1E-08 6.9E-05 5.7E-09 
72−  1.9E-03 4.8E-06 4.8E-04 2.9E-07 1.2E-04 1.9E-08 
82−  3.5E-03 1.6E-05 8.8E-04 9.9E-07 2.2E-04 6.2E-08 

 
 

Table 1(f): Order of convergence for the present method of Example 1  
N=128,256 N=256,512 ε  

3
1

6
1

21 =λ=λ ,  
12
5

12
1

21 =λ=λ ,  
3
1

6
1

21 =λ=λ ,  
12
5

12
1

21 =λ=λ ,  

42−  2.00 3.99 1.99 4.00 
52−  2.00 3.99 2.00 3.99 
62−  2.00 3.99 2.00 3.99 
72−  2.00 3.99 2.00 3.99 
82−  2.01 3.99 2.00 3.99 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

 

 
Approximate solution
Exact solution

 
Fig1 : Numerical solution for Example 1 with  and N=64. 310−=ε

 
Example 2: Next, we consider the problem  
 , )x(fyy =+′′ε−
subject to the boundary conditions 
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y(0)=0, y(1)=0 

where  f(x) is chosen such that the exact solution of the problem is given by 

)x()ee(xee)x(y
x

x −−+−+= ε

−

ε

−

12
1

. 
We have compared maximum absolute errors for the present method with the method [6] in Table 2(a). 
Maximum absolute errors for different values of N, 1, λε  and 2λ  are given in Table 2(b)-2(c). 
 

Table 2(a): Comparison of Maximum absolute errors for Example 2 with  65−=ε
 

Present method N Method in [6] Method in [15] 

3
1

6
1

21 =λ=λ ,  order 
12
5,

12
1

21 =λ=λ  
order 
 

80 1.6E-03 1.0E-03 4.1E-02 2.10 3.8E-03 3.81 
160 1.9E-04 9.1E-05 9.7E-03 2.04 2.7E-04 3.96 

 

Table 2(b) Maximum absolute errors and order of convergence for Example 2 with
12
5

12
1

21 =λ=λ , using present 

method 
 

ε  N= 100 N= 200 N= 400 
1/100 
Order 

7.661148e-008 
3.999 

4.789632e-009 
3.999 

2.994225e-010 
4.065 

1/200 
Order 

3.063084e-007 
3.999 

1.915564e-008 
3.999 

1.197452e-009 
3.998 

1/400 
Order 

1.224333e-006 
3.998 

7.661119e-008 
3.999 

4.7896136e-009 
3.999 

1/800 
Order 

4.851047e-006 
3.98 

3.063083e-007 
3.999 

1.915563e-008 
3.999 

1/1600 
Order 

1.915765e-005 
3.97 

1.224333e-006 
3.99 

7.661118e-008 
3.99 

 

Table 2(c) Maximum absolute errors and order of convergence for Example 2 with
3
1

6
1

21 =λ=λ ,  using present 

method 
 

ε  N= 100 N= 200 N= 400 
1/100 
Order 

1.534858e-004 
2.00 

3.834506e-005 
2.00 

9.584619e-006 
2.00 

1/200 
Order 

3.071443e-004 
2.00 

7.668021e-005 
2.00 

1.916345e-005 
2.00 

1/400 
Order 

6.154031e-004 
2.00 

1.534273e-004 
2.00 

3.833045e-005 
2.00 

1/800 
Order 

1.225290e-003 
1.99 

3.071167e-004 
2.00 

7.667331e-005 
2.00 

1/1600 
Order 

2.443767e-003 
1.98 

6.153897e-004 
2.00 

1.534239e-004 
2.00 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

 

 

Approximate solution 
Exact Solution

 

Fig: 2 Numerical Solution for Example 2 with and N=64. 310−=ε

Example 3: Finally, we consider the problem  
 

)x(fy))x(x(y =−++′′ε− 11  
subject to the boundary conditions 

y(0)=0, y(1)=0 
where f(x) is chosen in such a way that the exact solution is given by 

ε

−
−

ε

−

−−+=
)x(x

xee)x()x(y 11 . 
We have compared the maximum absolute errors for the present method with the method [15] in Table 3(a). 
Maximum absolute errors presented in Table 3(b)-3(c). In Table 3(d), we have presented maximum absolute 

errors and order of convergence for different choices of 
2
1

21 =λ+λ . 
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Table 3(a): Maximum absolute errors for the Example 3 with N=128. 
 

Results in [15] Results in [15] Present method ε 

Uniform 
mesh 

Variable mesh Uniform mesh Variable mesh

3
1

6
1

21 =λ=λ ,

 
12
5

12
1

21 =λ=λ ,

 
32−  2.30E-05 2.60E-05 2.27E-05 4.59E-05 2.27E-05 7.47E-10 
42−  3.10E-05 3.90E-05 3.06E-05 2.44E-05 3.06E-05 1.94E-09 
52−  4.50E-05 5.30E-05 4.54E-05 2.92E-05 4.54E-05 5.47E-09 
62−  7.80E-05 7.00E-05 7.84E-05 3.74E-05 7.84E-05 1.80E-08 
72−  1.50E-04 9.00E-05 1.45E-04 4.58E-05 1.45E-04 6.45E-08 
82−  2.80E-04 1.10E-04 2.74E-04 5.29E-05 2.75E-04 2.37E-07 
92−  5.30E-04 1.40E-04 5.26E-04 5.47E-05 5.29E-04 8.87E-07 

102−  1.00E-03 2.00E-04 1.02E-03 5.82E-05 1.03E-03 3.39E-06 
112−  2.00E-03 3.00E-04 1.99E-03 1.28E-04 2.03E-03 1.30E-05 

 

Table 3(b): Maximum absolute errors for the Example 3 with 
12
5

12
1

21 =λ=λ ,  using present method. 

ε  N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 
42−  1.91161e-07 1.19511e-08 7.47050e-10 4.68597e-11 3.74512e-12 1.82321e-12 
82−  6.00665e-05 3.78340e-06 2.36939e-07 1.48356e-08 9.27317e-10 5.78503e-11 
122−  7.90488e-04 7.90488e-04 5.06336e-05 3.18766e-06 1.99605e-07 1.24813e-08 
162−  7.76309e-02 4.00486e-02 8.41165e-03 7.53698e-04 4.82468e-05 3.03692e-06 
202−  9.68476e-02 9.40491e-02 7.87372e-02 4.00593e-02 8.34189e-03 7.44467e-04 

 

Table 3(c): Maximum absolute errors for the Example 3 with 
3
1

6
1

21 =λ=λ ,  using present method. 

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 
42−  4.90837e-04 1.22567e-04 3.06328e-05 7.65783e-06 1.91442e-06 4.78606e-07 
82−  4.50429e-03 1.10520e-03 2.75023e-04 6.87774e-05 1.71893e-05 4.29716e-06 

122−  6.50850e-02 1.75260e-02 4.06705e-03 9.98832e-04 2.48611e-04 6.20846e-05 
162−  2.23619e-01 1.51883e-01 6.39205e-02 1.70407e-02 3.95820e-03 9.72355e-04 
202−  2.57993e-01 2.53971e-01 2.26820e-01 1.52156e-01 6.36337e-02 1.69194e-02 
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Table 3(d): Maximum absolute errors and order of convergence for Example 3 with    using present method. 102−=ε

21 λλ ,  N=256 N=512 N=1024 

9
4

18
1 ,  

Order 

8.5439e-05 
 
1.99 

2.1403e-05 
 
1.99 

5.3559e-06 
 
1.99 

  
7
3

14
1 ,  

      Order 

3.6500e-05 
 
1.99 

9.1655e-06 
 
1.99 

2.2949e-06 
 
1.99 

 
24
11

24
1 ,  

     Order 

1.2825e-04 
 
1.99 

3.2110e-05 
 
1.99 

8.0343e-06 
 
1.99 

 
30
14

30
1 ,  

     Order 

1.5393e-04 
 
1.99 

3.8534e-05 
 
1.99 

9.6413e-06 
 
1.99 

 
3
1

6
1 ,  

    Order 

2.5739e-04 
 
2.00 

6.4277e-05 
 
1.99 

1.6072e-05 
 
2.00 

12
5

12
1 ,  

    Order 

2.1212e-07 
 
3.99 

1.3264e-08 
 
3.99 

8.2944e-10 
 
4.00 
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Approximate solution
Exact solution

 
Fig: 3 Numerical solution for Example 3 with  and N=64. 310−=ε

6. Conclusions  

We have presented spline based computational simulations for solving self-adjoint singularly perturbed 
boundary value problems. We have analyzed the convergence of the method and it is found to be fourth 
order for specific choice of parameters. Three examples are given to demonstrate the efficiency of the 
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proposed method. It is observed from the tables that the present method is more efficient than the methods in 
[6, 11, 12, 13, 15]. The computational result shows that the present method is fourth order convergence only 

for 
121 =λ
1

and
122 =λ
5

. Also it is shown that for any other choice of 
221 =λ+λ
1

3−

, the order of 

convergence is two. To further authenticate the applicability of the present method, the graphs have been 
plotted between exact solution and approximate solution of all the three examples for a fixed and 
N=64. It can be seen from Fig. 1-3 the computed solutions are in very good agreement with the exact 
solution. 

10=ε
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