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Abstract. This paper deals with an alternative approach for solving the PDE-constrained optimization 
problems. For this purpose, the problem has been discretized with the help of finite difference method. Then 
the reduced problem has been solved by advanced real coded genetic algorithm with ranking selection, 
whole-arithmetic crossover and non uniform mutation. The proposed approach has been illustrated with a 
numerical example. Finally, to test the performance of the algorithm, sensitivity analyses have been 
performed on objective function values with respect to different parameters of genetic algorithm. 
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1. Introduction  
PDE-Constrained optimization refers to the optimization of systems governed by partial differential 

equations. This means that the constraints of the optimization problems are partial differential equations. 
Most of the physical problems are modeled mathematically by a system of partial differential equations. Due 
to the complexity of the partial differential equations, analytical solutions to these equations do not exist in 
general. Hence to solve these partial differential equations, there is only one way to find the approximate 
numerical solutions.  

Finding the solutions of constrained optimization problems is a challenging as well as demanding task 
in the competitive market situations due to globalization of market economy.  Parallel research has been 
going on in PDE-simulation and numerical optimization. Currently there is a growing tendency of 
cooperation and collaboration among these two communities in order to achieve the best possible results in 
practical applications.  

To the best of our knowledge, very few researchers have solved this type of problems in the last few 
years.  In this connection, one may refer to the recent works of Hazra [1, 2], Hazra and Schulz [3], Hazra et 
al. [4], Biros and Ghattas [5], Emilio et al. [6], Griesse and Vexler [7], Rees, Stoll and Wathen [8], Rees, 
Dollar and Wathen [9] along with others.  

Hazra [1] proposed simultaneous pseudo-timestepping as an efficient method for aerodynamic shape 
optimization. In this method, instead of solving the necessary conditions by iterative techniques, pseudo-time 
embedded nonstationary system is integrated in time until a steady state is reached. Hazra and Schulz [3] 
developed a method for the optimization problems with PDE constraints. This method can be viewed as a 
reduced SQP method in the sense that it uses a preconditioner derived from that method. The reduced 
Hessian in the preconditioner is approximated by a pseudo-differential operator. Hazra et al. [4] proposed a 
new method based on simultaneous pseudo-timestepping for solving aerodynamic shape optimization 
problem. The preconditioned pseudo-stationary state, costate and design equations are integrated 
simultaneously in time until a steady state is reached. The preconditioner used in this study is motivated by a 
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continuous re-interpretation of reduced SQP methods. Biros and Ghattas [5] proposed a method for the 
steady-state PDE-constrained optimization, based on the idea of using a full space Newton solver combined 
with an approximate reduced space quasi-Newton SQP preconditioner. The basic components of this method 
are Newton solution of the first-order optimality conditions that characterize stationarity of the Lagrange 
function. Emilio et al. [6] solved the shape optimization problem in ship hydrodynamics using computational 
fluid dynamics. Griesse and Vexler [7] considered the efficient computation of derivatives of a functional 
which depends on the solution of a PDE-constrained optimization problem with inequality constraints. They 
derived the conditions under with the quantity of interest possesses first and second order derivatives with 
respect to the perturbation parameters. They developed an algorithm for the efficient evaluation of these 
derivatives with considerable savings over a direct approach, especially in case of high dimensional 
parameter spaces. To test the efficiency of the algorithm, numerical experiments involving a parameter 
identification problem for Navier-Stokes flow and an optimal control problem for a reaction-diffusion system 
have been presented. Hazra [2] proposed a method, called multigrid one-shot method, for solving state 
constrained aerodynamic shape optimization problems. Here multigrid strategy has been used to reduce the 
total number of iterations.  Rees, Stoll and Wathen [8] illustrated how all-at-once methods could be 
employed to solve the problems from PDE-constrained optimization problems. In particular, they showed 
that both the problems with and without constraints lead to linear systems in saddle point form and also 
presented efficient preconditioning strategies for both problems. Rees, Dollar and Wathen [9] considered 
simple PDE-constrained optimization problem, viz. distributed control problems in which the constraint is 
either 2 or 3 - dimensional Poission  PDE. Using discretization, the given constraints are converted to linear 
system with large dimension. To solve the systems, they introduced two optimal preconditioners for those 
systems which lead to convergence of symmetric Krylov subspace iterative methods in a number of 
iterations which does not increase with the dimension of the discrete problem. These preconditioners are 
block structured and involve standard multigrid cycles. The optimality of the preconditioned iterative solver 
is proved theoretically and verified computationally in several test cases.  

The earlier mentioned methods are gradient based methods. However, these methods have some 
limitations. Among these limitations, one is that the traditional non-liner optimization methods very often 
stuck to the local optimum. To overcome these limitations, generally, soft computing methods like Genetic 
Algorithm, Simulated Annealing and Tabu search, are used for solving decision-making problems. Among 
these methods genetic algorithm is very popular. It is a well-known computerized stochastic search method 
based on the evolutionary principle “survival of the fittest” of Charles Darwin and natural genetics. It is 
executed iteratively on the set of real / binary coded solution called population. In each iteration, three basic 
genetic operations i.e., selection, crossover and mutation are performed. The concept of this algorithm was 
conceived by Prof. John Holland [10], University of Michigan, Ann Arbar in the year 1975. Thereafter, he 
and his students contributed much of the development of the subject. Goldberg [11] first popularized this 
subject by writing a text book. After that, several text books (Michalawicz [12], Gen and Chang [13], 
Sakawa [14], Eiben and Smith [15]) have been published in this area.   

In this paper, an alternative approach has been proposed to solve the constrained optimization problem 
subject to the Poisson partial differential equations with Dirichlet boundary condition. In this approach, 
firstly the given problem has been discretized by finite difference method. Then the reduced problem has 
been solved by real coded advanced genetic algorithm. Next to illustrate the proposed approach, a numerical 
example has been solved. Finally, the performance of the proposed approach is tested by the sensitivity 
analysis on the best and mean objective function values with respect to the parameters of genetic algorithm.        

2. The Problem 
In this paper, we consider the optimization problem as follows:  

        Minimize ( )
2 2

2 2
( ) ( )

1,
2 2L LJ y u y y uβ

Ω Ω= − +  , 0>β                                             (1) 
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for given y  which represents the desired state and for some domain Ω∈ Rd (d = 2,3) with boundary Γ . The 
state variable y and control variable u are related by the state equation  
                                              

2      in y u−∇ = Ω                                                                                                                                                 (2) 
                                  with       on y g= Γ ,                                                                
where g is the given function defined on the boundary Γ . In the above problem, the state equation (2) is 
simply a Poission equation with Dirichlet boundary condition. It is to be noted that the state variable y can be 
eliminated from (1) with the help of state equation (2). As a result, the function    J(y, u) in (1) is reduced to 

( )( ) ( ),J y u u F u=  and the optimization problem (1) subject to (2) reduces to an unconstrained 

optimization problem as follows: 
                    Minimize F (u)                                                                                                                (3) 
If the function F (u) is minimized subject to so-called bound constraints 
                    ( ) ( ) ( )u x u x u x≤ ≤  a.e in Ω ,                                                                                    (4) 
the corresponding problem is called bound constrained optimization problem. 
    Let us define  
               { }2( ) : ( ) ( ) ( ) . .adu u L u x u x u x a e in= ∈ Ω ≤ ≤ Ω  

In this case, the PDE-constrained optimization problem can be written as 

 ( ) ( )2 2

2 2

,

1Minimize
2 2L Ly u

y y uβ
Ω Ω− +              

subject to      2 y u in−∇ = Ω                                                                                  (5) 
                      y g on= Γ  
           and ( ) ( ) ( )u x u x u x≤ ≤  a.e in Ω  
For detail discussion of this type of problem, one may refer to the works of Hinze et al. [16], Rees et al. [8] 
and Rees et al. [9].  
           There are two approaches for solving the optimization problem (5). The first approach is optimize-
then-discretize and second one is discretize-then-optimize. In this paper, we have used the second approach. 
For this purpose, we have applied the finite difference method to discretize the problem (5).  
            For discritization, we have considered two dimensional optimization problem. This means that the 
region 2.RΩ∈  Let [ ] [ ]1 1 2 2, , ,a b a bΩ ≡ × 1 1 2 2, , ,a b a b  being constants. The region Ω  is divided into 1 2n n  

equal sub-regions by a set of grid points ( )1 2,i jx x  

where   1 1 1 1, 0,1, 2,...,ix a ih i n= + =  

             2 2 2 2, 0,1, 2,...,jx a jh j n= + =      

and 
( ) , 1, 2k k

k
k

b a
h k

n
−

= =  

The grid spacing in 1x  and 2x  directions are denoted by 1h and 2h  respectively.  

Denoting ( )1 2,i jy x x  by ,i jy , the finite difference approximations based on central difference for the partial 

derivative of ( )1 2,y x x to both the space derivatives are given by 

                 
2

1, , 1,
2 2
1 1,

2i j i j i j

i j

y y yy
x h

+ −− +⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠
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2

, 1 , , 1
22

2 2,

2i j i j i j

i j

y y yy
x h

+ −− +⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

,                       , 1, 2, , 1i j n= −L        

Hence at each grid point ( )1 2, ,i jx x  the equation 2 y u−∇ = becomes 

                   1, , 1, , 1 , , 1
,2 2

1 2

2 2
, , 1, 2, , 1i j i j i j i j i j i j

i j

y y y y y y
u i j n

h h
+ − + −− + − +

+ = − = −L  

which implies  

      ( ) ( ) ( )2 2 2 2 2 2
1 2 , 2 1, 1, 1 , 1 , 1 1 2 ,2 ,i j i j i j i j i j i jh h y h y y h y y h h u+ − + −+ − + − + =    , 1, 2, , 1i j n= −L  

Then the problem (5) reduces to  

( )
21 1 1 1

2
, , ,

1 1 1 1

1Minimize
2 2

n n n n

i j i j i j
i j i j

z y y uβ− − − −

= = = =

= − +∑∑ ∑∑                                                                       (6) 

subject to  ( ) ( ) ( )2 2 2 2 2 2
1 2 , 2 1, 1, 1 , 1 , 1 1 2 ,2 ,i j i j i j i j i j i jh h y h y y h y y h h u+ − + −+ − + − + =    , 1, 2, , 1i j n= −L  

The boundary conditions y g= on Γ  are reduced to 

,0 ,0i iy g= , , ,i n i ny g= ,     0,1, 2, ,i n= L                                                                                         (7)                  

0, 0,j jy g= , , ,n j n jy g= ,   0,1, 2, ,j n= L  

where ( ), 1 2,i j i jg g x x=  

The bound constraints ( ) ( ) ( )u x u x u x≤ ≤  a.e. in Ω  can be written as  

                        , , , , , 1, 2, , 1i j i j i ju u u i j n≤ ≤ = −L                                                                     (8) 

where ( ), 1 2,i j i ju u x x=   

Special case: When 1 2h h h= = (say). 
In this case, (6)-(8) reduce to  

                ( )
21 1 1 1

2
, , ,

1 1 1 1

1Minimize
2 2

n n n n

i j i j i j
i j i j

z y y uβ− − − −

= = = =
= − +∑∑ ∑∑                                                      (9) 

subject to  ( ) ( ) 2
, 1, 1, , 1 , 1 ,4 ,i j i j i j i j i j i jy y y y y h u+ − + −− + − + =     , 1, 2, , 1i j n= −L  

The boundary conditions y g= on Γ  are reduced to 

,0 ,0i iy g= , , ,i n i ny g= ,     0,1, 2, ,i n= L                                                                                          (10)                  

0, 0,j jy g= , , ,n j n jy g= ,   0,1, 2, ,j n= L  

where ( ), 1 2,i j i jg g x x=  

The bound constraints ( ) ( ) ( )u x u x u x≤ ≤  a.e. in Ω  can be written as  

                        , , , , , 1, 2,..., 1i j i j i ju u u i j n≤ ≤ = −                                                                           (11) 

where ( ), 1 2,i j i ju u x x=   

Now, if we consider three dimensional optimization problems, then after discretization by finite difference 
method, the reduced problem is given by 
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( )
21 1 1 1 1 1

2
, , , , , .

1 1 1 1 1 1

1Minimize
2 2

n n n n n n

i j k i j k i j k
i j k i j k

z y y uβ− − − − − −

= = = = = =
= − +∑∑∑ ∑∑∑                                                    (12) 

subject to 

( ) ( ) ( ) 2
, , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,6 ,i j k i j k i j k i j k i j k i j k i j k i j ky y y y y y y h u+ − + − + −− + − + − + =                     

, , 1, 2, , 1i j k n= −L  
The boundary conditions y g= on Γ  are reduced to 

,0, ,0, ,i k i ky g=   , , , ,i n k i n ky g= ,       , 1, 2, , 1i k n= −L                                                                          (13) 

0, , 0, , ,j k j ky g=  , , , ,n j k n j ky g= ,    , 1, 2, , 1j k n= −L   

, ,0 , ,0i j i jy g= ,  , , , ,i j n i j ny g= ,      , 1, 2, , 1i j n= −L   

The bound constraints ( ) ( ) ( )u x u x u x≤ ≤  a.e. in Ω  can be written as  

                        , , , , , , , , , 1, 2,..., 1i j k i j k i j ku u u i j k n≤ ≤ = −                                                               (14) 

where ( ), , 1 2 3, ,i j k i j ku u x x x= .  

Now we have to solve the reduced optimization problems (9) and (12). For this purpose, we have developed 
real coded advanced genetic algorithm: 

3. Genetic Algorithm 
Genetic algorithm is a stochastic search algorithm that simulates the process of natural evolution and natural 
genetics. The evolution process begins by taking randomly generated possible solutions of the problem. Each 
solution in the population is evaluated according to some fitness measure. Filter solutions in the population 
are selected and allowed to produce offspring by crossover and mutation operators. This process is repeated 
till the termination criterion is satisfied.  
The different steps of this algorithm are described as follows: 
Algorithm 
Step-1. Initialize the parameters of genetic algorithm, bounds of variables and different parameters of the 

problem. 
Step-2. 0t =  [ t  represents the number of current generation]. 
Step-3. Initialize ( )P t [ ( )P t represents the population at -t th generation]. 
Step-4.   Evaluate the fitness function for each chromosome of ( )P t  
Step-5.   Find the best result from ( )P t . 
Step-6.   t  is increased by unity. 
Step-7.   If the termination criterion is satisfied go to Step-14, otherwise, go to next step. 
Step-8.   Select ( )P t from ( 1)P t − by ranking selection process. 
Step-9.   Alter ( )P t by crossover, mutation operations.  
Step-10.  Evaluate the fitness function for each chromosome of ( )P t . 
Step-11.  Find the best result from ( )P t . 
Step-12.  Compare the best results of ( )P t and ( 1)P t − and store better one. 
Step-13.  Go to Step-6: 
Step-14.  Print the result. 
Step-15.  End. 
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For implementing the above GA in solving the problems the following basic components are to be 
considered. 

• GA Parameters 
• Chromosome representation and initialization of population 
• Evaluation of fitness function 
• Selection process 
• Genetic operators (crossover and mutation) 
• Termination criterion 

3.1.  GA Parameters 
There are different parameters used in the genetic algorithm, viz. population size (p_size), maximum 

number of generations (m_gen), crossover rate/probability of crossover (p_cross) and mutation 
rate/probability of mutation (p_mute). There is no hard and fast rule for choosing the population size for GA. 
However, if the population size is considered to be large, storing of the data in the intermediate steps of GA 
may create some difficulties at the time of computation with the help of computer. On the other hand, for 
very small population size, some genetic operations cannot be implemented. Particularly, mutation operator 
does not work properly as the mutation rate is very low. Regarding the maximum number of generations, 
there is no indication for considering this value. Generally, it is problem dependent. Particularly, it depends 
upon the number of genes (variables) of a chromosome in artificial genetics. Again, from the natural genetics 
it is obvious that the crossover rate is always greater than that of mutation rate. Usually, the crossover rate 
varies from 0.8 to 0.95 where as the mutation rate, as 0.05 to 0.2. Sometimes, it is considered as 1 n  where 
n  be the number of genes (or variables) of the individuals.  

3.2.  Chromosome representation and initialization  
In the applications of GA, the appropriate chromosome (individual) representation of solution for the 

given problems is an important task to the users. There are different types of representations, viz. binary, real, 
octal, hexadecimal coding, available in the existing literature. Among these representations, real coding 
representation is very popular as this type of chromosome representation looks like a vector. In this 
representation, each component (gene) of the chromosome is the values of decision variables. 

After the selection of chromosome representation, the next step is to initialize the chromosomes that 
will take part in the artificial genetic operations like natural genetics. This process produces population size 
number of chromosomes in which every component for each chromosome is randomly generated within the 
bounds of the corresponding decision variable. There are different procedures for generating a random 
number for each component of the chromosomes. In this work, we have used uniform distribution for this 
purpose. 

3.3.  Evaluation of fitness function 
After getting a population of potential solutions, we need to check how good they are. So we have to 
calculate the fitness value for each chromosome. In evaluation, the value of objective function corresponding 
to the chromosome is taken as the fitness value of that chromosome. 

3.4.  Selection 
The selection operator plays an important role in GA. Usually, it is the first operator applied to the 
population. The primary objective of this operator is to emphasize on the above average solutions and 
eliminate below average solutions from the population for the next generation under the well-known 
evolutionary principle “survival of the fittest”. In this work, we have used ranking selection scheme as 
selection operator. This selection operator indicates that only the ranking order of the fitness of the 
individuals within the current population determines the probability of selection. In this selection, the 
population is actually sorted from the best to worst fashion. The selection probability of each individual is 
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determined according to the ranking rather than their fitness value. There are several methods for assigning 
the selection probability for each individual on the basis of ranking. Here we have considered the nonlinear 
ranking method. In this method, the selection probability ip  of the individual with rank i is obtained as  

                                         ( ) 11 −−= i
cci ppp  

where cp  be the selection probability of best individual. 

 

3.5.  Crossover 
After selection process, other genetic operators like, crossover and mutation are applied to the resulting 
chromosomes (those which have survived). Crossover operator plays an important role to empower the GA. 
It operates on two or more parent chromosome solutions at a time and generates offspring by combining the 
features of all the parent chromosomes. In this operation, expected [ ]_ * _p cross p size ( * denotes the 

product and [ ] denotes the integral value) number of chromosomes will take part. In our work, we have used 
whole arithmetical crossover. The different steps of this operator are as follows: 
Step-1. Find the integral value of _ * _p cross p size  and store it in N . 

Step-2.  Select the chromosomes kv  and iv  randomly from population. 

Step-3.       The components kjv′  and ( )1,2, ,ijv j n′ = L  of two offspring will be created by 

                   
( )

( )
1

1
kj kj ij

ij kj ij

v v v

v v v

λ λ

λ λ

′ = + −

′ = − +
 

                  where λ  is a random number between 0 and 1. 

Step-4.  Repeat Step-2 and Step-3 for 
2

N
 times. 

3.6.  Mutation 
The aim of mutation operation is to introduce the random variations into the population. Sometimes, it helps 
to regain the information lost in earlier generations. Mainly, this operator is responsible for fine tuning of the 
system. This operator is applied to a single chromosome only. Usually, its rate is very low; otherwise it 
would defeat the order building being generated through selection and crossover operations. Mutation 
attempts to bump the population gently into a slightly better course i.e., mutation changes single or all the 
genes of a randomly selected chromosome slightly. In this work, we have used nonuniform mutation. If the 
gene ikv  of a chromosome iv  is selected for mutation and the domain of ikv  is [ , ]ik ikl u , then the reduced 

value of ikv  is given by 

{ ( , ),  if random digit is 0.

( , ),  if random digit is1.

ik ik ik
ik

ik ik ik

v t u v
v

v t v l

+ Δ −
′ =

− Δ −
 

where {1,2,..., }k n∈  and ( )yΔ  returns a value in the range [0. ]y . 
In our work, we have taken  

( )( , ) 1 / bt y yr t TΔ = − where r is a random number from[ ]0,1 , T is the maximum generation number and b 

is the system parameter determining the degree of non-uniformity. 

3.7.  Termination criteria 
The termination condition of GA is to stop the algorithm when either of three conditions is satisfied: 

(i) the best individual does not improve over specified generations. 
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(ii) the total improvement of the last certain number of best solution is less than a  
          pre-assigned small positive number. 
(iii) the number of generations reaches maximum number of generation ( m_gen). 

 

4. Numerical Illustration 
To illustrate the proposed GA for solving PDE-constrained optimization problem, we have considered the 
following example [Rees et al. (2010)]. 

( ) ( )2 2

2 2

,

1min
2 2L Ly u

y y uβ
Ω Ω− +  

     s.t. 2     in y u−∇ = Ω          
      on y y= Γ             

where [ ]0,1 , 2,3m mΩ = =  

( ) [ ]

( ) [ ]

2 2
2

1 1 2 1 2

2 2 2
3

1 1 2 3 1 2 3

1 1exp       if  , 0,1
2 2

1 1 1exp       if  , , 0,1 .
2 2 2

x x x x x

y

x x x x x x x

⎧ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟⎜ ⎟− − − + − ∈⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎝ ⎠= ⎨
⎛ ⎞⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟− − − + − + − ∈⎪ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎝ ⎠⎩

 

The bounds au  and bu  are defined as follows 

  10.35   if  0.5
0.4     otherwisea

x
u

− <⎧
= ⎨−⎩

 

and  

 
( )( ) ( ) [ ]

( )( ) ( ) [ ]

22 2
1 2 1 2

32 2 3
1 2 3 1 2 3

0.1 exp         if  , 0,1

0.1 exp    if  , , 0,1 .
b

x x x x
u

x x x x x x

⎧− − + ∈⎪
= ⎨
⎪− − + + ∈
⎩

 

Here we have taken the value of β  as .10 2−=β  
Considering equal number of subintervals in each direction of Ω , we have discretized the problem by finite 
difference method and obtained two reduced problems, one for m=2 and another for m=3. Then, we have 
solved both the problems for different values of the number of subintervals with the help of GA with ranking 
selection process, whole arithmetic crossover and non uniform mutation. This GA has been coded in C 
programming language. The computational work has been done on a PC with Intel Core-2-duo 2.5 GHz 
Processor in LINUX environment.  
 
In this computation, the following values of GA parameters have been used: 

                                p_cross = 0. 8, p_mute = 0.1 and b = 2 
For each computation, 20 independent runs have been performed by GA and the following measurements 
have been obtained for m = 2 and 3 separately. 

(i) The value of the objective function 
(ii) CPU time. 

The results have been displayed in Table-1 and Table-2.  
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Table-1:  Result of two dimensional problem 
 

No. of 
division P_size M_gen 

Best found 
objective 

function value

Mean  objective 
function value S.D. of objective Mean time 

5 10 500 0.05122 0.05122 2.13575 1710−×  0.0925 

5 15 200 0.05122 0.05122 2.13575 1710−×  0.0515 

5 20 200 0.05122 0.05122 2.13575 1710−×  0.077 

5 20 100 0.05123 0.05124 7.88069 610−×  0.0375 

5 20 500 0.05122 0.05122 2.13575 1710−×  0.1825 

5 15 300 0.05122 0.05122 2.13575 1710−×  0.082 

10 10 500 0.21855 0.21871 8.6601 510−×  1.3155 

10 20 500 0.21836 0.21840 1.93309 510−×  2.65 

10 20 200 0.21952 0.21978    1.59456 410−×  0.63288 

10 15 200 0.21966 0.22048 8.78374 410−×  0.7925 

10 15 300 0.21891 0.21912 1.16566 410−×  1.18444 

20 10 500 0.94505 0.94787 1.94313 310−×  15.147 

20 20 500 0.93777 0.93945 8.00664 410−×  30.248 

20 20 200 0.95256 0.95502 1.68052 310−×  12.244 

20 15 300 0.93043 0.95001 4.80573 310−×  13.7705 

 
In Table 1 and 2, best found objective function values, mean and standard deviation of objective function 
values along with mean computational time have been shown for different number of divisions, population 
size (p_size) and maximum number of generations (M_gen). From the computational results of standard 
deviation values of objective of each case, it is evident that the simulation results are stable. 
 

5. Sensitivity Analysis 
To investigate the overall performance of the proposed GA for solving PDE-constrained optimization 
problem, sensitivity analyses have been carried out graphically for the best found  and mean objective 
function values with respect to different GA parameters separately taking other parameters at their original 
values. For this purpose, we have considered the two dimensional optimization problem mentioned in the 
earlier section ‘Numerical Illustration’. The corresponding results have been shown in Fig. 1-4. From Fig. 1, 
it is observed that the best found objective function value be the same for all the values of population size 
(p_size) greater than or equal to 15 whereas  the mean objective function value be the same for the 
population size 35, 40, 45, 50. On the otherhand, in Fig. 2, it is seen that the best found objective function 
values be the same for all values of maximum number of generations greater than or equal to 475 whereas 
the mean objective function value be the same for the maximum number of  
generation greater than or equal to 550. This means that the proposed GA is stable with respect to the 
population size as well as the maximum number of generations. In Fig. 3 – 4, the objective function values 
(best found as well as mean) have been compared with respect to the probability of crossover (p_cross) 
within the range from 0.60 to 0.95 and the probability of mutation (p_mute) within the range from 0.04 to 
0.16 respectively. From these figures, it is clear that the proposed GA is also stable with respect to the 
probability of crossover as well as the probability of mutation. 
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 Table-2:  Result of three dimensional problem 
 

No.of 
division P_size M_gen 

Best found 
objective 

function value

Mean objective 
function value S.D of objective Mean time 

5 10 500 1.29531 1.29599 3.16502 410−×  0.604 
5 20 500 1.29442 1.29462 1.24355 410−×  1.239 
5 20 200 1.29886 1.30022 6.74286 410−×  0.495 
5 15 200 1.29965 1.30173 8.90383 410−×  0.365 
5 15 300 1.2966 1.29782 6.8286 410−×  0.546 

10 10 500 14.47154 14.48215 4.65141 310−×  16.169 
10 20 500 14.44199 14.45144 4.33701 310−×  32.4875 
10 20 200 14.49715 14.50671 5.25776 310−×  13.0425 
10 15 200 14.5028 14.51442 6.29426 310−×  9.7375 
10 15 300 14.48634 14.49519 6.16286 310−×  14.616 
20 20 500 145.96196 146.05327 5.99274 210−×  551.99 
20 10 500 146.00694 146.08767 5.89379 210−×  282.16 
20 20 200 146.03197 146.10606 6.30338 210−×  225.96 
20 15 200 146.04698 146.11108 5.50818 210−×  168.67 
20 15 300 145.99485 146.09398 6.77513 210−×  252.59 
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Fig. 1: Population size (p_size) vs. Best and mean objective function values  
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Fig. 2: Maximum no. of generation (m_gen) vs Best and mean objective function values 
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Fig. 3: Probability of crossover (p_cross) vs Best and mean objective function values 
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Fig. 4: Probability of mutation (p_mute) vs Best and mean objective function values 

6. Conclusion 
For the first time, we have proposed an alternative approach based on advanced genetic algorithm to 

solve the PDE-constrained optimization problems subject to Poisson partial differential equations. This 
approach does not require any derivative information. The aim of this study is to determine the global or 
close to global optimum (though the global optimality cannot be proved analytically with the help of 
proposed algorithm). From the study of sensitivity analysis, it has been observed that the proposed algorithm 
is efficient as well as stable. In this paper, the proposed approach is applied for solving constrained 
optimization problem with bound constraints. However, it can be applied for the problem with unknown 
search space also. 

 Now there is a question: why this problem is solved by GA though it can be solved by gradient based 
indirect method. The objective function of the optimization problem is quadratic, but the numbers of control 
variables as well as the state variable are larger. As a result, the computational cost will be high in case of 
gradient based indirect method than GA.  

 For future research, one may apply this approach for solving PDE-constrained optimization 
problems in the areas of fluid flow and aerodynamic shape optimization. 
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